DOF Protocol Specification

DOF Protocol Specification

Technical Steering Committee

DOF Protocol Specification: DOF Protocol Specification

Technical Steering Committee

Document Information

Document Tracking Number dof-2008-1

Document Version 7.0.1, 12 January 2018

Build Version 7.0.1.8

Source Information 2018-01-12, " at commit

c4a21c8bf741a32d4fe20776861d03baab7463%9a on branch
"master" of repository core-specifications

External Reference DOF Protocol Specification, OpenDOF TSC, [dof-2008-1] (7.0.1,
12 January 2018)

This document is managed by the Technical Steering Committee of the OpenDOF Project, Inc.. Contact
the committee using the following information.

Contact Information

Post Mail OpenDOF Project, Inc.
Technical Steering Committee
3855 SW 153rd Drive
Beaverton, OR 97003

Telephone 1-503-619-4114

Fax 1-503-644-6708
Email tsc@member.opendof.org [mailto:tsc@member.opendof.org]
Copyright

Copyright © 2008-2018 Panasonic Corporation, Bryant Eastham

Patents

Contributors to the OpenDOF Project make a non-enforcement pledge related to any patent required to
implement the protocol s described in this document. For more information see https://opendof.org/pledge.

License

See https://opendof.org/license-specifications.

mailto:tsc@member.opendof.org
mailto:tsc@member.opendof.org
https://opendof.org/pledge
https://opendof.org/license-specifications

Table of Contents

1. ADOUL ThiS DOCUMENTuiieiiit ettt ettt ettt ettt e ettt e et et e et e nb e e e e entreeeentnaeeeees 1
N o [T= 0ol SO P TP SOPPTR 1
1.2, AULNOTIEY oottt 1
1.3, PDU DEFINITIONSvuiieiiiiieecei ettt et e et et e e e e e s 1

L.3.LL CONEEXE ettt ettt 1
1.3.2. GENEIElIZALION ...cevvieeeeei ettt 2
1.3.3. QUAIITICAHIONS ...t e e 2
L34 FEIOS e 4
1.4. Specifications, NOteS and WarniNGSceeeuuueiieiiieieiii et e 5
1.5, Printing ThiS DOCUMENTiiiiiieiiiii ettt et e e e 6
1.6. ComMPAiNG DOCUMENEScceeutneiiittiee ettt ettt e e e ettt e e et e et et s e e e era e e eeenaaeeeee 6
1.6.1. TeXt COMPAIISON ..cevuneiiiii ettt e e et e e e et e e e e enb e e ennnns 6
1.6.2. GraphiCal COMPANTSONccuuueiiiiieeeeit ettt e ettt e e e e e e e e eenees 6

2. OVEIVIBIN ..ttt e e et e e et e e et ettt e e e e e e s 9
2.1 ThE OSI MOE ...t et e e e e 9
2.2, NEEWOIK LAYEITNG ... eeeeit ettt e et e e e e 10
2.3, CONtrol AULNOTTLY ...eeetieeieit ettt e e et e et e e e et e e e nta e eenes 10
2.4. summary of Externally Assigned NUMDBErSooiiiiiiiiiiiii e 10

2.4.1. SMI Private Enterprise NUMDErcooiiiiiiii e 10
24,2 ETHERTY PE oottt e et e e 10
24,3, PPP s 10

3. TranspOrt REQUITEIMENTSiiiiii ettt ettt e et e et e e et e e e et e e e raa s 11

3.1. Typical Session and SEIVEN TYPES ...vuu ittt ettt e e 14
311 SESSIONILOSIIESS ...ttt 14
312, INONEILOSSY ..ttt ettt ettt et e e e eeaas 14
31,3, SESSIONILOSSY .tueeeetiieeeetti ettt e ettt e et ettt ettt ettt e e e e e aee 15

3.2. General TranSport PrOPEItIEScceuuuiiiii et 15
3.2.1. Impact of Security on Datagram Propertiescccuveiveieiiiieiiiiineeeeiieeeeenien 16

3.3, LOSIIESS REQUITEIMENTS ... ceieiie ettt ettt e et e e e e e e e e 17
3.3.L Traffic SYMMELIY ..o 17

3.4, LOSSY REQUITEMENESeneiiiii ettt ettt e e et e e et e e e eaa e eeens 18

3.5. MUItiCaSt REQUITEIMENTScciiriee ittt e e 19

3.6, AQArESS DISCOVEIYeieitiieteete ettt ettt et ettt e et e e e eb e e e e ana e 19

3.7. Transport SPECITICALIONSuvuieieiti ettt ettt e e e e et e e e eri e eees 19

4. DOF ProtoCol SEACK (DPS)uueiiiiiieiiiiii ettt ettt e e et e e e et e e e e e eeens 21

4.1, GeNEral PrINCIPIES ...ttt 21
411 RESEIVED BilS ..ooviiiiiiii e 21
A.1.2. THMEOULS ... eeeeti ettt e ettt ettt ettt e ettt e e et e e et et e e et et neeeenba e eeenbaaaeees 22
4.1.3. ProtOCOl DiSCOVEIYceeitieeiiit ettt ettt ettt e e e e e e e eaeans 22
4.1.4. ProtoCOl NEQOIBLIONevuneiiiiiieieii ettt 23
4.1.5. TranSPOrt AGArESSEScouuueiiiii ettt et e e e e e e eaees 26
4.1.6. LOOPhACK Preventionuiiiiiiiie it 26
4.1.7. Invalid PDU HaNAliNgccouueiiiiiieiiii et 27

A.2. OPEIGLIONStueeeeti ettt ettt ettt ettt e e ettt et et e s 27
421 RUIESTOr SID USE ..ottt 29
A.2.2. SID SECUMLY eevtieeiiiie ettt ettt ettt e et e ettt e e e e et e e eenb e eees 30
4.2.3. OPEration GIaPNSeieeiiieieii ettt 30
4.2.4. Operation LIfECYCIE ... 32
4.2.5. Operation MULabilITyooeeeiiiiiiii e 34
4.2.6. Operation ConsOlidationiieeeuuiiieiiii e 35
4.2.7. Priority of State MOdifiCalioNSuuiiiiiiiiieiiiiie e 36

DOF Protocol Specification

4.3. GeNEral StaCK SEOUENCE .. .uvuiii et e e e e e e e e e e e et e e et e e et e e e e e e eaanas 36
4.3.1. Optimized Datagram REAAINGccvvuiiiiiiiiiii e 38
7 Y N O PP 39

A4, SESSIONS ANA SEIVEIS ..uuiieiiiiii ettt e et e e et e e e e e ettt e e e et e e e esta e e e eatn e eaestnaaeeenes 39

S I =101 oo o A PPN 40

4.6. DOF NEtWOIK ProtOCOIuuiiiiiiiieeiiii ettt e et e eeeaa e eees 40
I O 0 (= AP T TP PP 41
4.6.2. DOF Network ProtOCOl VEISIONSiviiiiieiiiiiiieeeiii e e e e e e e s 41
R A o = SRS 42
4.6.4. DNP Required FUNCHONAILYccvuiiiiiiiiiec e e e 42
4.6.5. DNP LOogiCal AAreSSING .. .couuiiiiieiiiiiiiieee e e e e e e e e e e e et e e e aen 42

4.7. DNP Discovery and LOOPhacKooeeuiiiiiiiiiiiice e e e 43
4.7.1. DOF Network Pratocol - Version 0 (DNPVO)cocvnieiiiiiiiiicciieee e, 43
4.7.2. DOF Network Protocol - Version 127 (DNPVI127)oovviiiiiiiiiieciiieecieeiees 46

4.8. DOF Presentation ProtOCOIooviiuiniiiiiiiiiee e e e e e eenens 48
I I 0 (= AP TPT PP 49
4.8.2. DOF Presentation ProtoCOl VEISIONSoveiiiiiiieiiiiiieeecie e 50
A.8.3. FlagS .. eeeiiii et 50
4.8.4. Encryption and Message AUthentiCationcccoovviiiiiiii i 50
4.8.5. Common DPP Capabiliti€Sccvuuiiiiiiiei e 51

e I B e B = wlo = Y PP 61
4.9.1. DOF Presentation Protocol - Version 0 (DPPVO)ccovvieiiiiiiiiieciiieceieeeiiees 61

4.10. DOF Application ProtoColoceuuiiiiiiiie e e e e e e 65
4.10.1. Peer-to-Peer Protocols and Client/Server ProtoColSvvevvivieeiiiinieeiiiinnnn, 66
4.00.2. CONEXE ...eeeeieet ettt et et e e e e e en e 66

411, APP VEISION DISCOVEIY ..ovvuniiiiiiiiiiee i e e e e e e e e e e e e et e e et e et e e st e e e e e aneeaens 67

4.12. DPS Intermediate NOde BENAVIOTccuunieiiiiiii e 67

A.13. DPS SESSIONS ..cevtiieiiiiiieeeeeiia e e ettt e e e ettt e e et e e e e et e e et et e e e e e b e e e et e e e e e e e 68
4.13.1. Summary of Negotiation PhaseSovveiiiiiiiii e 68
4.13.2. ThE 'NONE" SESSION ..tuiiiiiiiiiee ittt e e et e e e et eeeeat e e eeaenaaaaes 69
4.13.3. LOSSY 2-NOUE SESSIONS .. cevuiiiieiiiieiiiie et e e e e e e e e et e et e e e e e e eaenas 69
4.13.4. LOSSIESS 2-NOUE SESSIONS ...vvuieiiiiiieeeeiie et e et e et e e et e e et e e e e s 71
4.13.5. N-NOUE SESSIONSeuuieiiiiiieeiiie ettt e et e e et e e et e e e e et e e e eete e e e eereaeeae 73

5. DOF SesSiON ProtOCOI (DSP) ..uuiiiuiiiiieiiie it e et et e e e e e e e e e et e e et e e st a e e e e eaneees 75

L3N o o= o g T o1 7= 75

5.2. DSP State MaChineccoouuiiiiiiii it 76
LI I T 11 1= o LU (= PP 78

5.3. Configuration OPLIONSiiiuuieiiiei e e e e e e e e et e e e et e e et eeanaeean s 78

N @1 W 00 1= (= oy 79

5.5. APP VErSION DISCOVENY ..uuiitniiiiiieiiiietiie e e e e e e e e e s e et e e e e et e e et e et e e e st e e aaeeaenas 79

5.6. DSP Command and Response DEfiNItioNSoovvuiiiiiiiiiiiccie e e 82

5.7. Configuration REQUESEccuuuiiiiieii et e e e e e e e e e e et e et e e e e eaens 82
5.7.1. Small Implementation HINScccouiiiiiii e 84
T A = Lo PP 84
D73 DELAIIS ... 84
B5.7.4. RErY BEhAVIOr ...couiiiiiiii et 86
B5.7.5. ROULING RUIES .. .ccuiiii e e e e e 86
5.7.6. SEQUENCE DIAQIaMSuuieeiiiii i eiie e e e e e e e e e e e e et e e et e e et e e e e eaneeeen 86

LR A O o o PP UPRPPRPRPR 88

D0 QUETY it 90

5.10. ClOSE/ TEIMINGLEeeiitiieeeeii e ettt e et e et e et e e e e s e e e et e e e et e e e e et e e e eaan s 91
5.10.1. Small Implementation HINSccooviiiiiiiiiiceie e e 92
B.L0.2. FIOWS 1ottt 92
B.10.3. DEIAIS ..t 92

DOF Protocol Specification

6. External PDU Reference

6.1. DOF Common Types, OpenDOF TSC, [dof-2009-1] (7.0.1, 12 January 2018)

Vi

List of Figures

A.1. DNP UNICBSE QUENY ..oetiiiiiiti ettt e ettt ettt ettt e ettt e et et r e e et et r e e e etbn e e eeentnaeaees 43
4.2. DNP MUITICASE QUENY ...ttt ettt ettt ettt ettt e ettt e ettt e e et et e e e eeb e e e eebeaaeeees 44
4.3. DPP Source Lost and Found Example NEWOIKcoooiiiiiiiiiiiii e 56
4.4. DPP Lost and Found EXampPle 1coouuiiiiiiiiiiii ettt 58
4.5. DPP Lost and Found EXampPle 2uuiiiiiiieiii et 58
4.6. DPP Operation Rename Example NEWOIKccouuiiiiiiiiiii e 59
4.7. DPP RENAME EXAIMPIE ...ttt 60
4.8. DPP UNICASE QUETY ...eteeti ettt ettt ettt ettt ettt e et e ettt e et e et e et e e e e e eeaa e eeennas 62
4.9. DPP MUIICESE QUETY ...eeiiieeeeit ettt ettt ettt e et et et e e e e e e ennanns 63
4.10. LOSSY SESSION LIfECYCIE .uuiieii et 70
4.11. L0SSIESS SeSSiON LITECYCIE ... 72
5.1. DSP UNICASE QUENY ...etneiiiii ettt ettt ettt ettt e ettt e e e e et e e e e et e e e eene e eees 80
5.2. DSP MUITICASE QUENY ... ittt ittt ettt ettt ettt e e ettt e e e et e e e e et e e e enta e eeenes 81
5.3. BaSIC DSP NEGOLEONeeietiieeiii ettt e et e e e e e e 86
5.4. BaSIC DSP NEQOLEONeiiitiieiiiii ettt e e e et e e e e e 87

Vii

viii

List of Tables

5.1. DSP Event Descriptions .

5.2. DSP Action Descriptions

5.3. DSP State Transitions

Specifications and PDUs

Secure datagram transport properties must represent only secure information. gof - 2008- 1- spec- 1 «++-- 17
Sessions must be monitored and must guard against improper clients. gof - 2008- 1- spec-2 «++vreeeerseees 17
Datagram responses should be mappable to an associated lossless server transport address.

O - 2008 1- SPEC- 3 # e e rrernnentatat et 18
Lossy commands should be mappabl e to an associated |ossless server transport address.

O - 2008 1- SPEC-4 +rrrrerernnenttt e 18
Multicast servers should use registered, consistent transport addresses. gof - 2008- 1- spec-5 ++vveeeesvee 19
Senders must set all RESERVED bitS tO ZEI0. qof - 2008- 1- SPeC- 6 «++e+ssrrrreeessrrreeesiireresiisiieeesinnnes 22
Receivers must ignore all RESERVED hitS. gof - 2008- 1- Spec-7 «+++srreeeessrrmmeesiiiineeiiiiieee e 22
Implements must drop PDUs that use unrecognized versions on lossy transports. gof - 2008- 1-

T 23
Two-node lossless transport sessions immediately negotiate protocols. gof - 2008- 1- spec-9 +rveeeenrees 24
Negotiation of version isin decreasing order of deSIT€. gof - 2008- 1- Spec- 10 «+reeerrrrrreeessureeeiiiuinen 24
Accept the first valid negotiated VErSioNS. qof - 2008- 1- SPEC- 11 «+eeeesesrrrrrrrrrrreeeesiiiiirireeeeeaaaaannnn, 24
During negotiation, immediately terminate 2-node session on receipt of unknown versions.

Of - 2008 1- SPEC- 12 e rerrnernetett et 25
DNP/DPP version negotiation must complete within 10 Seconds. dof - 2008- 1- spec- 13 «+reeeerrreeeenne. 25
Correctly distinguish transport a0dreSSES. qof - 2008- 1- SPEC- 14 «++rrreeeesrrrreeeriirureeeiiiieeesiiiieeeeinnees 26
DPS transports must correctly reject loopback datagrams sent from the same application.

O - 2008- 1- SPEC- L5 v rerurrer ettt 26
Correctly handle invalid PDUs, dropping sessions when correct state cannot be ensured.

Of - 2008- L1- SPEC- 16 #x e rrrersrsrsssne sttt ettt et s e e e 27
Correctly maintain the DIRECTED and FLOODED state of operations. gof - 2008- 1- spec- 17 «+++-+++-- 28
Each identified operation must use a unique operation identifier. gof - 2008- 1- spec- 18 «+eeeervvreeeenne 29
Responses use the correct operation identifier. gof - 2008- 1- spec-19 «++rvreeerrrreeeiiiiiiieiiiiieeei, 29
A single transport address (including DNP logical addressing) must be associated with asingle

SID in each Security Domain. gof - 2008- 1- SPEC- 20 ++++eretreetttt et 30
Handle different OPID representations during comparison and forwarding. gof - 2008- 1- spec- 21 ------- 30
Unless specifically allowed by a PDU, transport unicast is required for all responses. qof - 2008- 1-

LY o= o472 R T T T P PR PP P PP P PP PP PP 31
Correctly handle immediately timed-out OPerations. dof - 2008- 1- SPec- 23 +rrereessrrrreeesiureeesiiiiieeanns 33
Treat all operation state as Mutable unless specified otherwise. gof - 2008- 1- spec- 24 «+--ovvvveeeeinnnnen. 34
Invalidate operation state identified as Source when the operation source changes. ot - 2008- 1-

T P 35
Apply operation state changes in the defined order. gof - 2008- 1- spec- 26 «++eeerrrreeeriiriireeiiiiiieeeine, 36
DOF ProtoCol StACK (of - 2008- 1- paU- 1 «+++++srereesssrrreessisrrreesitrteesissteessstrra e e s sbrs e e s saase e e 37
DNP version fixed for a single 2-N0de SESSION. ¢of - 2008- 1- SPEC- 27 «+-+rrrrreerrrrrreesiiiureeeiiiiieeeanns, 37
DPP version fixed for asingle 2-node SESSION. qof - 2008- 1- SPEC- 28 «+rreeerrrrrrresrirrrreaiiisiieeaiisiieeens 37
DNP version query (version 0) must be supported on all 10SSy SErvers. gof - 2008- 1- spec-29 -+vvveeesns 38
DPP version query (version 0) must be supported on all 0SSy SErvers. gof - 2008- 1- spec- 30 «+vveeeeseee 38
APPID version query (DSP) must be supported on all 0SSy SErVers. gof - 2008- 1- spec- 31 +vveeeervvesss 38
APPID must be present in all lossless datagram after negotiation. gof - 2008- 1- spec-32 «vvveeeervvnesns 38
The Maximum DPS MTU iS 221 (of - 2008- 1- Spec- 33 «++esseseresreresessesssrsseesssmssssssesssesseeesseses 39
General DNP Header qof-2008- 1- POU- 2« ereee ettt 40
General DNP Trailer AOf - 2008- 1- PAU- 3 ++rererereeneene 41
DNP versions are registered with ODP-TC before use in products. gof - 2008- 1- spec-34 «++eeeesrvveeeenns 42
Reserved DNP versions that cannot be USed. (of - 2008- 1- Spec- 35 «+-eeeeeerrrrrrrrrereeeiiiiiiiiiiieeeeaeeeans 42
The flag bit of DNP must be set on al streaming datagrams except during negotiation.

Of - 2008- 1- SPEC- 3B = rrerrerrnrnentte e 42

Xi

DOF Protocol Specification

Default DNP address for |0ssless server-side SESSION. qof - 2008- 1- Spec- 37 «++rreeeesrrrreeesiiureeeaiiuneess 42
DNPvO Query AOf - 2008 Lo PAU- 4 +reerrnrnenet et 45
DNPvO QUEfy AOf - 2008- 1- PAU-5 +rrerererereeeett e 46
DNPvO Version List must be sorted in increasing Order. qof - 2008- 1- Spec- 38 «-+++rrrrrrrereeeeeseaninnnnn. 46
DNPv127 must not include flags. dof - 2008- 1- Spec- 39 «+++rreeerirrrrreriiiieieiiiiiie e 46
DNPv127 must not be advertised. gof - 2008- 1- SPEC- A0 +rrrrerrrtutettt e 46
DNPv127 Header AOf - 2008- L= PAU- B ++e e rererenssrenrtt i 47
DNPv127 must only be used on [0SSy tranSpOItS. gof - 2008- 1- Spec- 41 «+rrreeeesrrrreeessirrreasniirreeennni, 47
General DPP Header AOf = 2008 1= PAU- 7 ++rrrererrnetiitt i 48
General DPP Trailer AOf - 2008- L- PAU- 8 e resrrrenrnretnt it 48
DPP versions are registered with ODP-TSC before use in products. gof - 2008- 1- spec- 42 «+-xvvveeeenne. 50
Secure datagrams (authenticated or encrypted) must be rejected if DPP or Application datais

modified in transit. 4of - 2008- 1- T < T 50
Security Mode of Operation Header and Trailers are placed correctly, defining encryption

boundaries. qof - 2008- 1- SPEC- 44 +rtu ittt 51
Security Mode of Operation HEader gof - 2008- 1- pdu-9 +++rrreerrrrrreeesrsrmreeniiiires i e 51
Security Mode of Operation Trailer gof - 2008- 1- pdu- 10 «++rreeeeerrrrreeesiiimeresiiiiree st e e 51
DPP Common Behaviors must be accepted as soon as DPP is negotiated. gof - 2008- 1- spec- 45 -+++++-+- 52
Nodes should wait at least 16 seconds after a Cancel All or Node Down before reusing a SID.

O - 2008 1- SPEC- 4B v rerrnernrene ettt e 53
Use and respond to the Node Down and Cancel All commands. gof - 2008- 1- spec- 47 «+vvvreeeeeeeeannnne 54
Use and respond to the source lost and source found reqUeSES. qof - 2008- 1- spec- 48 «+--rrrreeeriirereeanns 55
Use operation retry for all operations that include Source state. gof - 2008- 1- spec-49 «-rrrveeerirereeanns 56
Correctly handle and forward Operation Rename request from the operation parent. qof - 2008- 1-

SPPBC- 50 # v e v e et et e 59
Respond correctly and within 10 seconds to Ping PDUS. of - 2008- 1- Spec- 51 «++rreeeessrrrreesiiuieeainns 61
DPPvO Query AOf - 2008 L- PAU- 11 +ereenrnenenenenen et 64
DPPvO Query Response §of - 2008- 1- T [T 64
DPPv0 Version List must be sorted in increasing Order. gof - 2008- 1- Spec-52 «++eeessrrreeessvrreeesinnnnes 64
General Application Header 4ot - 2008- 1- LT J T PP PP 65
Application versions are registered with ODP-TSC before USe. qof - 2008- 1- spec-53 -vrrvrrrereeeeeaanns 65
Security modes of operation are assigned APPIDs from 0x6000 to OX6FFF. qof - 2008- 1- spec-54 ------ 65
The use of any invalid APPID closes alossless 2-node SeSSiON. gof - 2008- 1- Spec-55 «--rrrveeererrreeen 66
Empty application PDUs are always allowed and defined as ano-0p. dof - 2008- 1- spec-56 «+++---vvees-- 66
Sessions must authenticate (if required) and be established within 30 seconds. gof - 2008- 1-

T L 69
Nodes joining N-node unicast sessions should confirm by sending an DPP Heartbeat to the hub.

0T - 2008- - SPEC- 58+ e rrnrurrarntut et 73
Nodes leaving N-node unicast sessions should send an DSP Close/Terminate. gof - 2008- 1-

o P 73
DSP Application FOrMat qof - 2008- 1- pdu- 14 «««++essrrreessrsrrmeemiiirreassireessirreesssssreeasanre e 75
DSP Command/Response FOrMAL qof - 2008- 1- pdu- 15 «++++rsreeeeserrrrreeiiureeeiiiiireeasiiieeesisaneeeans 76
DPS 2-node sessions must open within 30 SECONGS. gof - 2008- 1- SPec- 60 «+++xrrrrreerrrrrreaiiiiireeannne, 78
Attribute/Value Pair 4of - 2008- 1- e [T R T PP 78
DSP Attribute Codes are registered with ODP-TSC before USe. gof - 2008- 1- spec- 61 «+--vvreeeesnvness 79
Unadvertised APPIDs should not be discoverable. gof - 2008- 1- spec-62 «+eeeovvveeeerirvreeeiiiiiiieeiiiies. 80
Configuration REJUESL (of - 2008- 1- pdu- 17 «+++rreeersrrrrreerimrreeeiiiieee sttt e e st 82
Configuration ACKNOWIEAQE qof - 2008- 1- pdU- 18 «+++reessrrrrrresrsrrreeiiiiiiieeiiiiieessiiie e e 82
Configuration Negative ACKNOWIEAQE ¢of - 2008- 1- pdu- 19 «++rreeeerrrrrrreeiiiireesiiiieeesiiiee e e 83
Configuration Reect gof - 2008- 1- T TT L BT P 83
Attribute Data List gof-2008- 1- 1T T 83

Xii

DOF Protocol Specification

DSP must result in a consistent set of negotiated OptioNS. gof - 2008- 1- SPec- 63 ++rrreeerrrrreeeriiireeannns 85
DSP must result in an unambiguous Set of OPtioNS. gof - 2008- 1- SPEC- 64 «+-rrrreeerirrreeeiiiiieeiiiinen 85
Open (command) AOf - 2008- L- PAU=- 22 ++esrererrnsssenssre s 88
Open (response) AOf - 2008- 1- PAU- 23 +everernenenenetet et 88
Secure Open (IESPONSE) (of - 2008- 1- PAU- 24 =++++rreeesrrreresaisrreeeaitieeeaiitreeeaatreeasitreeesssaaeeeans 88
Open response (both cases) Version List must be sorted in increasing order. gof - 2008- 1-

SPEC- 65 +++ssreeessreeanteeeant et e eh e e e h e e e h e e b e e e a e e e e e L e e L e e e e e e ea e e e a e e e e e e a e e e e e e e e 89
Query (Command) AOf - 2008- 1- PUU- 25 +rrrrerrrre ettt 90
Query (response) AOf - 2008- 1- PAU=- 26 +++rererrnrsrenensttte i 91
Query response Version List must be sorted in increasing order. gof - 2008- 1- spec- 66 «++++-=srreeeesnnn. 91
Close/Terminate (COMMAN) of - 2008- 1- PAU- 27 «+++eeesrrrrreessrmrreaiiiieeeiaiiee e e 91
Close/Terminate (r €SPONSE) (of - 2008- 1- PAU- 28 +++++rreeeerrrrreesirsrreeeiiureeeaiistreeesiiiaeeesisreeee s 92
Compressed UnSigned 16-Bit qof - 2009- 1- pdu- 1 «++srrreeeerrmrreeesiimiieeeiiiiie et 93

Xiii

Xiv

1. About This Document

This document containsinformation about the DOF Protocol Stack. Thisiscritical information for anyone
who needs to work with the protocols themselves, and contains useful background information for those
interested in the architecture and inner workings of DOF systems.

This information is highly technical. This document serves as a specification and reference against
which someone could implement networked software that interoperated with DOF products without using
existing libraries.

1.1. Audience

The primary audience of this document is people implementing libraries that use DOF protocols. Others
that are concerned about how DOF protocols work on anetwork at avery low level can aso benefit from
this document.

Readers should be familiar with technical protocol documentation. This document is similar to an 'RFC'
for DOF protocols, and familiarity with the language used in these types of documents is helpful.

This document is not required reading for those who need to use existing DOF libraries, although system
designers may benefit from an understanding of this information. In particular, the information related to
security and connections can help system designers to better understand how DOF systems work.

1.2. Authority

This document, in its English form, is the authoritative document for DOF protocols. Due to the detailed
nature of protocol design, it may be difficult for areader to implement these protocols correctly based on
atranslated document. When questions arise, the English version is authoritative.

All implementations that claim to be DOF compliant must satisfy the requirements set forth in this
document.

This document is managed by the Technical Steering Committee of the OpenDOF Project, Inc., referred to
as'ODP-TSC'. Theinside cover of this document contains contact information for the Technical Steering
Committee.

The web site for the Technical Steering Committee is https://opendof.org/tsc.

1.3. PDU Definitions

1.3.1.

This document dealswith the transmission of information on anetwork. In order to describethis, diagrams
show different fields, their network order, and positioning.

All DOF protocol documentation uses a similar diagramming style, discussed in this section. The word
'PDU', which stands for 'Protocol Data Unit', indicates these diagrams.

Context

Each PDU represents information sent on the network in some context. This usually means that there is
information sent 'surrounding' the PDU itself. Thisinformation provides the 'context' for the PDU.

https://opendof.org/tsc

Generdlization

1.3.2.

1.3.3.

For example, the context for the DOF Protocol Stack itself is a network transport. This could be UDP/
IP, TCP/IP, or any other transport. The transport will require certain headers and trailers, but they are not
shown in each DOF Protocol Stack PDU. In this example the transport provide the context of the DOF
Protocol Stack PDU.

In asimilar way, the DOF Protocol Stack defines the context for the other DOF protocols. The Object
Access Protocol, for example, can use the DOF Protocol Stack for its context. Just as the transport headers
are not shown for the DOF Protocol Stack, the DOF Protocol Stack headers are not shown for the Object
Access Protocol.

Understanding the context requires understanding the rel ative position of the different layersin the protocol
stack. Each PDU definesthe ordering of all of its parts, and may indicatethat it isitself an instance of some
other general PDU format. This means that it is always possible to start at a high-level PDU definition
and understand it completely, but not always possible to identify everywhere that a particular PDU may
be used (as a part of some other higher-level PDU).

Each protocol specification defines its specific contexts. The context definition includes a description of
the underlying stack layer (or the containing layer), and defines the information that must be available
from that layer (for reception) or passed to that layer (for transmission).

As an example, the context of the DOF Network Protocol is a transport. The transport has a requirement
to provide the addresses of nodes, and so part of the context for the transport is the sender address (for
reception) or the target address (for transmission). Any transport that will work with the DOF Protocol
Stack must meet the context requirements.

Generalization

Many times a particular PDU will be a specific type of amore general PDU. In these cases, the PDU will
indicate that it is an 'instance' of the more general type.

Qualifications

Each PDU will have qualifications placed on its use. The general qualifications include security and
transport requirements. The following terms identify these qualifications. Others may be present as well.

1.3.3.1. Transport Qualifications

There are three major transport categories for DOF protocols (see the DOF Protocol Specification,
Transport Requirements). These are None, Lossy, and Lossless. There are also three addressing types:
Unicast, Multicast, and Broadcast. PDUs indicate the ability to use each of these categories as follows:

Sessi on: Conbi nati ons of None, Lossy (2-node, n-node), or Lossl ess.
Addr essi ng: Conbi nations of Unicast, Milticast, or Broadcast.

1.3.3.2. Security Qualifications

Each PDU categorizes security qualifications according to the major aspects of security (see the DOF
Security Specification, Overview). These are Encryption, Data Integrity, Authentication, and Access
Control. Encryption prevents viewing of the PDU, Data Integrity ensures that others do not modify the
PDU, Authenticationindicatesknowledge of the nodesinvolved in the communication, and Access Control
restricts those able to use the PDU.

Data Integrity is required according to the DOF Protocol Stack specification for all secure packets.
Authentication is required whenever permissions are involved, or when it isimportant to know something

Qualifications

about the relationship between the sender and receiver. Encryptionisrequired if the contents of the packet
contain information that must not be visible to potential attackers.

In addition, there is the case of unsecured communication. PDUs that do not require security will list
‘Unsecured’ as a possible choice. Finally, certain PDUs are required to be Unsecured, and are identified
as such.

Each application PDU must specify its security requirements. If Access Control is required, the PDU will
indicate the permissions required for the command and for any response. However, it is typica for al of
the PDUs of agiven protocol to share the same requirements, and so the protocol specification may define
its security qualifications in a single section. In this case, the individual PDUs should refer back to this
section to avoid confusion.

It is aso typical for applications to require the security of the session. A PDU indicates this as 'session
security’, and isits own security qualification. If the PDU allows the 'None' session type then thisimplies
that Unsecured is allowed, as session type 'None' cannot be secure.

For PDUsthat refer to session security or acommon security section, one of the following formatsis used:
Security: See the section 'Security Qualifications'.

or

Security: Session.

The PDU uses the following identifications to specify the security qualifications for a PDU:

Unsecured: (description).
Encryption: (description).
Message aut hentication: (description).

Perm ssi on (command): (description).
Perm ssion (response): (description).

For each of these, the (description) varies. There are many different combinations of values, as described
here.

Unsecured can have the values 'Required’, 'Allowed’, 'Not Allowed'.

Encryption can have the values 'Required’, 'Allowed’, 'Not Allowed'.

M essage authentication can have the values 'Required’, 'Allowed’, 'Not Allowed'.

The specific PDU determines the permissions required (for both command and response).

There are combinations that are not valid. The following table defines all allowed combinations if a
combination does not appear in the table then it isinvalid.

In general, security theory links Encryption and Data Integrity. If oneis'Required' then the other must at
least be 'Allowed'. Encryption and Data I ntegrity are the opposite of Unsecured. If either is'Required' then
unsecured must be 'Not Allowed'. Again, note that since data integrity is a common requirement for all
secure packets the PDUs do not list it separately.

Unsecured / Encryption / M essage Description

Authentication

Required / Not Allowed / Not Allowed Indicates the PDU must be unsecured.
Allowed / Allowed / Allowed Indicates there are no security regquirements.

Fields

Unsecured / Encryption / M essage Description

Authentication

Not Allowed / Allowed / Allowed Indicates the PDU must be either encrypted or
authenticated. Thisisthe lowest level of security
possible for a PDU.

Not Allowed / Required / Allowed Indicates that encryption is required, and data
integrity is optional.

Not Allowed / Allowed / Required Indicates that encrypted is optional, but
authentication is required.

Not Allowed / Required / Required Indicates both encryption and authentication are
required.

1.3.4. Fields

Each PDU shows a container, represented as a sequence of fields. The table fully describes each field.

Thefollowing is an example of a PDU description.

q EXa.rane PDUexan’pl e- pdu- 1

-—
PDU Context
7 6 5 4 3 2 1 0
A|B Field Name } Field Name = 0x05 (5)
N Optional, controlled by A
ame (default value)
Another Field

A One bit. Controls the presence of Nane.

B One bit. Field description.

Fi el d Nane Type and size description. Field description.

Nare Type and size description. Optional, controlled by A. Field description.

Anot her Field Typeand sizedescription. Field description.

The container represents the PDU. The diagram shows Fields first to last, |eft to right and top to bottom.
This means that the first fields appear on the wire before the last fields. Thisis ageneral principle: things
on the top and toward the left in the diagrams appear on the wire before things on the right and bottom.
Note that the transport is free to use whatever ordering it must, and memory layout may different from
the PDU definition. However, the transfer of a PDU from a program, over an arbitrary transport and
into another program must maintain the perceived ordering between the two programs. PDU diagrams
are always shown MSB first (most significant byte) and msb first (most significant bit) unless otherwise
indicated.

Each field identifies its contents and provides information necessary to understand its use. In the example
above, the diagram shows the first six fields of the container. Each field is named, with the exception of
reserved fields which are indicated as being grayed out. Field names use nronospace t ext similar to

Specifications, Notes and Warnings

that used in program listing. The third field shown is indicated as reserved. Reserved hits have special
requirements described in the DOF Protocol Specification.

Severd different field cases are typical, described in the following sections.

1.3.4.1. Typical Field

A typical field defines its name, its type, and its description. As shown, this field is not optional, and so
it must appear in the position indicated by the diagram. The PDU uses Fi el d Nare throughout the
related documentation to refer to the field. The type of the field is areference to some other defined PDU.
Otherwise, the PDU indicates the size of the field and any defined structure.

1.3.4.2. Optional Field

An optiona field is similar to the typical case, but is indicated as optional in a note to the right. Each
optiona field will indicate what controls whether or not it isincluded as well as the default value that the
field takes on when it is absent.

1.3.4.3. Fixed Values

Fields may have required values based on the specific PDU. Thisis common in the case of a PDU being
an instance of another PDU, where the specific instance requires certain field values. In this casg, it is not
valid for the PDU to contain values other than that specified, if so the PDU isinvalid.

Therequired value is shown to the right of the field as a comment.

1.3.4.4. Bit Fields

Itiscommon for PDUsto leverage asingle byteto store multiplefields (bit fields). The packing of multiple
fieldsinto a single byte isindicated as shown in the earlier example. This packing of bits may aso leave
space that can be indicated as reserved.

The PDU indicates reserved bits visually although the PDU does not individual name these fields.

Note that bit fields may specify default values just as other fields. However, single bit fields do not show
their hexadecimal representation. In addition, bits without names that have required values may indicate
their values in the place of the name.

1.4. Specifications, Notes and Warnings

This is a technical specification document. It is critica to understand how the document indicates
specification items. There are also annotations for notes (implementation notes or other information that
isworthy of extra notice) and warnings (pitfalls or extremely critical information). In addition, there are
implementation notes, which point out optimizations that are not obvious.

Each type of callout ends either when another callout begins or when the text goes back to the normal
indentation.

G | Thisisanote. Thetext isinset and there is a header to indicate the beginning of the text.

This is an implementation note. The text isinset and there is a header to indicate the beginning
of the text.

Thisisawarning. The text is bold inset and there is a different header to indicate the beginning
of the text.

A

Printing This Document

@ Thisis an exampl€exanpl e- spec- 1
Thisisthe text.

Following the summary is descriptive information about the specification item. Each specification item
has a unique number assigned.

1.5. Printing This Document

The format of this document is for two-sided printing on US L etter paper.

1.6. Comparing Documents

1.6.1.

1.6.2.

The easiest way to compare versions of this document isto compare the corresponding source. The source
format is AsciiDoctor, which is a markup-style text format. This format can be compared using any text
comparison tool, including those that work with source control documents. To facilitate determining the
source for each document there is information about the commit, branch, and repository along with the
document version information. In addition the following guidelines are followed to make things easy to
compare:

1. Theinput files put each sentence on a separate line, with no hard line-wrapping.
2. Tothe extent possible, macros and templates are used to determine formatting and structure.
3. Graphics and diagrams also use text formats.

If all you have availableisacompiled document (PDF or HTML) then there are tool s available to compare
them. This section summarizes some of these methods with their pros and cons.

Text Comparison

There are severa free tools that will do comparisons of the text of a PDF. One of these is the xdocdiff
plugin for WinMerge. The plugin extracts the text from the PDF (including some information like page
numbers), and WinMerge then compares the text.

WinMerge is available from http://winmerge.org. The xdocdiff plugin is available from http:/
freemind.s57.xrea.com/xdocdiff Plugin/en/index.html.

Graphical Comparison

In order to compare formatting, or to see the changesin the context of the document, a graphical compare
isrequired. There are several free tools, but each has limitations.

1. diff-pdf, available from https.//github.com/vslavik/diff-pdf, shows an overlay of the matching pages
in different colors.

2. DiffPDF, available fromhttp://www.qtrac.eu/diffpdf.html, shows side-by-side red-lined differences of
matching pages.

Both of these tools suffer from their page-by-page comparison methods. This means that when context
shifts because of additions or removals that they start sensing changes at each page boundary. DiffPDF
has the ability to select comparison ranges, allowing the program to synchronize at the beginning of each
section, but this requires manual configuration and can be difficult for large documents.

http://winmerge.org
http://freemind.s57.xrea.com/xdocdiffPlugin/en/index.html
http://freemind.s57.xrea.com/xdocdiffPlugin/en/index.html
https://github.com/vslavik/diff-pdf

Graphical Comparison

There are also commercial toolsthat do an excellent job at comparing PDF documents. Thefirst is Adobe
Acrobat (http://www.adobe.com/products/acrobat.html), whichin later rel easeshasa'Compare Document'
feature. The result of the comparison is an annotated PDF, and hovering the mouse over the change will
show the details.

Another commercial tool is PDF Content Comparer (http://www.inetsoftware.de/products/pdf-content-
comparer) from i-net Software. This tool does side-by-side comparison, but has an intuitive auto-
synchronize that keeps similar content lined up even when additions or deletions have occurred.

http://www.adobe.com/products/acrobat.html
http://www.inetsoftware.de/products/pdf-content-comparer
http://www.inetsoftware.de/products/pdf-content-comparer

2. Overview

This document discusses the protocols and theory behind the Distributed Object Framework, or DOF.

The descriptions of DOF protocols are based on the OSI protocol vocabulary. Thetarget systems (possibly
embedded microprocessors) on which these protocols are implemented necessitate some optimizations
and other modifications to that standard.

This document discusses the common aspects of the DOF Protocol Stack. It does not cover the details of
the various DOF application protocols. Application protocols each have separate specification documents
with the exception of the DOF Session Protocol (DSP) which is covered in this document.

There are three main categories of DOF protocols. The first are application protocols. These protocols
sit at the top of the protocol stack, and are the protocols that most engineers think of when they think
of protocols at all. Examples of standard application protocols are FTP (File Transfer Protocol), HTTP
(Hyper-Text Transfer Protocol), Telnet and SMTP (Simple Mail Transfer Protocol).

Five application protocols are critical to DOF systems:

1. DOF Session Protocol (DSP). This protocol allows connected nodes to negotiate options for the
protocols that they will use (including which protocols they will use).

2. Object Access Protocol (OAP). This protocol allows a device to present Properties, Events, Methods,
and Exceptionsto clients.

3. Ticket Request Protocol (TRP). This protocol manages key distribution.
4. Ticket Exchange Protocol (TEP). This protocol manages security and access control.
5. Secure Group Management Protocol (SGMP). This protocol manages secure groups.

Application protocols require the services of other protocolsto do their work. These other protocols form
the remaining two main categories. The first are the typical stack layers:

1. DOF Presentation Protocol (DPP). This protocol handles encryption and defines which application
protocol is being used.

2. DOF Network Protocol (DNP). This protocol alows for encapsulating other DOF Protocols over a
variety of transports.

The final main category contains the encryption modes. These are both application protocols and can
appear in other stack layers—they define the behavior the DOF presentation protocol s when used securely,
and they may contain application PDUS.

Of coursethere are other standard networking protocolsthat are used in DOF solutions. A primary example
isTCP/IP.

2.1. The OSI Model

The OSI modéd for network protocols looks like this.
Standard OS| Layers.

Each layer in the protocol relates to three different layers: the layer above it in the stack, the layer below
it and (virtually) to the corresponding layer in the receiving stack.

Network Layering

While the OSl layering scheme is apowerful abstraction, it is not realistic to implement afully abstracted
stack on an embedded platform, and in fact, many full operating systems combine at least some of the
layers. Even so, putting different functionality into 'layers’ and defining a protocol between those layers
can achieve the goals of modularity and clarity.

With this background, it is useful to identify the specific requirements that the network protocol has and
assign them to layers.

2.2. Network Layering

In order to consolidate network features into manageable groups, designers group protocols by the
functionality they provide. In many cases, these layers are logical, meaning that there is no externally
defined API for a particular layer but its functionality represents a "meta-layer" that provides the
functionality of many logical layers. This simplifies implementation and reduces required header size.
Defined layers should have an associated API.

This document does not describe the standardized layers other than to identify that in DOF protocols
several of the layers combined as described.

2.3. Control Authority

The DOF protocols are controlled by the Technical Steering Committee of the OpenDOF Project, Inc.
(ODP-TSC).

The ODP-TSC manages the DOF Protocol Stack specification, including all its layer and application
protocols. Prior approval is required for all changesto the protocols, or additions to the protocols.

2.4. Summary of Externally Assigned Numbers

2.4.1.

2.4.2.

2.4.3.

DOF protocols use several assigned numbers from different standards bodies. This section summarizes
these numbers. Assignments that are associated with a specific transport, like Internet Protocol (IP) arein
the specification document associated with that transport.

SMI Private Enterprise Number

ThelANA has assigned the decimal number 4561 for DOF protocols by IANA. Seethe IANA site[http://
www.iana.org/assignments/enterprise-numbers] for more information.

ETHERTYPE

IEEE has assigned the hex number 0x8876 is reserved for DOF protocols. See the |EEE site [http://
standards.ieee.org/regauth/ethertype/type-pub.html] for more information.

PPP

The IANA has assigned the hex number 0x4027 for DOF protocols. See the IANA site [http://
www.iana.org/assignments/ppp-numbers] for more information.

10

http://www.iana.org/assignments/enterprise-numbers
http://www.iana.org/assignments/enterprise-numbers
http://www.iana.org/assignments/enterprise-numbers
http://standards.ieee.org/regauth/ethertype/type-pub.html
http://standards.ieee.org/regauth/ethertype/type-pub.html
http://standards.ieee.org/regauth/ethertype/type-pub.html
http://www.iana.org/assignments/ppp-numbers
http://www.iana.org/assignments/ppp-numbers
http://www.iana.org/assignments/ppp-numbers

3. Transport Requirements

This document uses the word ‘transport' to represent the underlying network that is used to communicate
DOF protocols and the software that provides that network. A fundamental goal of DOF specificationsis
to be transport agnostic, meaning that almost any transport can be used. This section discusses common
transport terms and DOF transport requirements. Anyone implementing an DOF transport should be very
familiar with the terms and requirements of this section.

The function of atransport is to exchange information between nodes in a network. In doing this it will
leverage transport addresses to identify the endpoints of the communication. Further, it will typically
exchange information in alogical unit called a datagram.

Throughout this document, the word 'datagram’ refers to this unit of information transfer. It is equivalent
to a buffer of data with an associated length. Related to a datagram isa PDU, or Protocol Data Unit. This
document uses the word 'PDU' to refer not just to the datagram, but also to the definition of the contents
of the datagram. The term datagram appears extensively in network terminology, and any confusing uses
of the term (those that do not refer to a unit of information transfer) will be qualified.

There are several terms related to transports defined in this section. Each of these terms appears
in networking literature, and even the standard definitions can be confused. Throughout all DOF
documentation the following definitions will be used, even if they are dlightly different than accepted
industry definitions. Further, many of these terms are important for transport implementations, but not
critical to the definition of the DOF protocols. Terms that are used by the DOF protocols are defined as
part of the ‘context’ at the end of this section. The context defines the information passed from the transport
to the stack.

The following terms also appear later in this section if more discussion is required:

Broadcast A type of datagram where all nodes on a network are receivers. Broadcast
datagramsare always associated with receiving servers. Theterm broadcast
is also used in the context of a session, and in this case, it means that the
datagram is sent to all nodes in the session. However, this second use of
the term usually relates to application, rather than transport, behavior.

Client The nodethat takesthefirst action in establishing asession, or the node that
sends a datagram to a server. Note that this definition refers to a particular
action, not the behavior of an application asawhole. It iscommon for peer-
to-peer systems to have nodes that are both client and server at the same
time from an application perspective.

Connection A 2-node session monitored in such a way that notification will occur
if the connection is 'broken' (meaning that datagrams can no longer be
transferred). A session converts into a connection through monitoring,
whether done by the operation system, library, or application. DOF
protocols do not require connections, although they are typically provided
(if requested) by most transports. In alayered protocol stack, once asession
converts to a connection it appears as a connection by al higher levels
of the stack. For example, a TCP transport provides a connection to the
lowest DOF stack layer. Once a TCP connection is established (using a
TCPserver), DOF protocolsdo not need to do anything in order to maintain
the connection. If the connection is broken (due to network failure or other
reasons) then the DOF implementation will be notified (typically by the
operating system or TCP implementation).

11

Datagram Transport

In-Order

Lossless

Lossy

Multicast

Orderless

Server

Session

Streaming Transport

Unicast

A transport type that exchanges datagrams from node to node, preserving
the boundaries of each datagram. DOF protocols are based on datagrams,
and so it is natural to use a datagram transport.

A type of datagram delivery where the order in which datagrams are sent
is guaranteed to be the order in which they are received. It is possible to
have in-order and lossy, preserving order even if some datagrams are lost.
Usually, in-order transports are lossless.

A lossless transport is one in which the nodes are guaranteed to receive
each datagram sent (unless the transport fails).

A lossy transport is one in which the nodes are not guaranteed to receive
each datagram sent.

A type of datagram that designates a set of nodes as receivers. Multicast
datagrams are always associated with receiving servers.

A type of datagram delivery where the order in which datagrams are sent
is not guaranteed to match the order in which they are received.

Part of the transport on a node that is able to send and receive datagrams,
and establish transport sessions and connections. Its ability to send
datagrams may require additional state (such as a destination transport
address). Not all servers provide all of these capabilities, however. For
example, atypical TCP server will not accept adatagram, cannot be used to
send adatagram, and will only establish connections. Serversare associated
with a specific transport address that is the target address for packets sent
to the server and the address used to request sessions/connections from the
server.

A relationship between a set of nodes where each node maintains state
regarding the other. Sessions can exist at a variety of different levels
(transport, security, application, etc.), and so the use of this term may be
ambiguous. In this case the use should be clarified by indicating the type
of session. For example, a UDP transport provides a server or session
to the DOF implementation. State is provided that would indicate the
nodes involved in the session, but maintaining any sense of continuity
(providing a connection if one is required) is the responsibility of the
DOF implementation in this case. In many cases the DOF implementation
requires asession for certain behavior, relying on the shared state available
to both nodes. Sessions typically refer a set of 2 nodes (the client and the
server). However, it is possible to have n-node sessions. In this case all of
the nodes attempt to maintain state. A lossless session will be able to track
shared state exactly, where alossy session may not be able to synchronize
state exactly.

A transport type that does not preserve datagram boundaries from node
to node. DOF protocols are based on datagrams, and so in the case of
streaming transport the specification must include additional information
to preserve datagram boundaries.

A type of datagram where asingle receiver isidentified.

There is a difference between lossy/lossless and in-order/orderless. However, this document treats them
as the same, and focuses on the lossy/lossless aspect. This means that lossy implies orderless, and

12

lossless implies in-order throughout this document. Further, the property of streaming/datagram is of
minor importance to the DOF implementation, and so it is not discussed in detail. The DOF Network
Protocol (discussed later) is responsible for converting streaming transports back to datagram. Finally,
with regards to state, there are three possihilities: none (no shared state, or state on only one node and
not the others), session, and connection. DOF implementations rarely cares about the difference between
session/connection, and so the focus will be between none and session.

Excluding the addressing types, these variations combine to form four different relationships: none/lossy,
none/l ossl ess, session/lossy, session/lossless. Of these four, the combination of none/losslessisignored (it
isvirtually impossible to guarantee no datagram | oss without some shared state). Thisleavesthree primary
categories of node relationships that are of concern.

Note that at the transport there may be many different combinations that can be considered equivalent to
these three. This discussion relates to how DOF implementations view the transport, and what impact the
different transport properties have on DOF protocol specifications.

A datagram isreceived from the transport in one of two ways: on a session (of any type, including through
aserver), or through a server with no session. In the first case the session alone may be enough to identify
the transport addresses used by both the sender of the datagram and the receiver of the datagram (if the
session is between two nodes, each with a transport address). Further, in this first case where the session
is between 2 nodes only a reference to the session itself is required in order to send a datagram back to
the original sender. In the case of no session or a multipoint session, the datagram itself is associated only
with the server it was received on and the transport address of the sender. It is possible to send a datagram
back to the sender, but doing so requires that the transport be given a server, any session, and the transport
address of the destination.

In order to send a datagram on an DOF transport the transport must be given either a session, or a server
along with a transport address (and possibly a session).

In atruedistributed peer-to-peer system, almost every node in the system isboth aserver and aclient. This
means that most nodes have the ability to initiate or respond to a session. It isimportant to understand the
typical implementation guidelines for these types of nodes, and to define the expected behavior of aserver
and client. Thisis one purpose of this section of this document.

DOF architectureimposes several requirementson clientsand servers. These requirementsareindependent
of transport, but do depend on the specifics of the session or connection provided. The following
assumptions are made by the architecture. Failure to meet these assumptions will result in application
failures, although depending on system design these may be expected and acceptable.

DOF implementations assume:

1. It is possible to send a response to the sender of a datagram (the client). Without this capability no
responses could be received by the client. Thisisavery typical feature of al transports, and so isa safe
assumption. DOF implementations further assume that for datagrams received by servers, a response
may originate from a different server (transport address) than the server that received the datagram.
This assumption is more complicated, and is discussed further later in this section.

2. If the server allows lossless sessions to be created, then that server can be identified by the transport
address of alossy response datagram. This assumption formsalink between the transport address of the
lossless server and the transport address of the source of the lossy response datagram. This assumption
only indicates that such a server may exist; it does not mandate that it must exist.

3. If the server allowslossless connectionsto be created, then that server can beidentified by the transport
address of alossy command (non-response) datagram. Thisis the same assumption as above but in the
opposite direction. This assumption also only makes sensein a peer to peer sense, because it presumes
aserver on the (original) client.

13

Typical Session and Server Types

If possible, these assumptions should be satisfied by all transport implementations. The following sections
go into further detail on the ways in which DOF implementations use the transport. These assumptions
form the basis for how DOF implementations remain transport independent at the application layer.

3.1. Typical Session and Server Types

3.1.1.

3.1.2.

The discussion above indicates severa properties that are associated with transports, clients, and servers.
Out of the many different combinations of properties, there are three types that are so common that they
are assumed to exist. These three types were introduced above.

Session/Lossless

This typical combination assumes that a server was used to create the session, and that from that point
the session exchanges datagrams that are lossless and in-order (assuming that the two are related). Note
that it is common for this combination to also provide a streaming session, but that DOF protocols do not
differentiate streaming/datagram for thiscombination: it may be either. It istypical that thistype of session
will include only 2 nodes, but it is possible to have n-node sessions that are lossless.

DOF protocols make the following assumptions about these types of sessions and the serversthat establish
them:

1. Theserver typeissession, although it may be connection (connection is never required). The transport
will indicate the creation of the session to the DOF implementation, and it will create associated state.
The DOF implementation will managethisstate until (in the case of aconnection) thetransport indicates
that the connection isterminated or that fact is determined by higher protocol layers.

2. All communication through the server is associated with a session. No datagram will be received (by
the DOF implementation) that is not associated with a previously created session.

3. The session and datagram contains enough information for a response or new command to be sent to
the sender of a datagram. In the typical case of a 2-node session then only the session is required.

4. Only the unicast address type is allowed for both nodes in a 2-node session. In n-node sessions the
other address types (multicast/broadcast) are allowed, although broadcast is limited to the nodes in the
session. The session or connection established uniquely identifies a single application on each node.

5. Since a session or connection must be created before a datagram is exchanged, the transport must
provide a notification method for session creation. Further, the application must explicitly accept the
new session in order to correctly track the state that it must maintain. Once created, the session can
exchange a datagram. A received datagram is always provided in the context of a session. The session
may be streaming, in which case the DOF Network Protocol will provide framing to preserve the
datagram boundaries.

Lossless sessions are almost always associated with streaming, and so this category is often called
'streaming' servers. However, it is actually the session and lossless aspects of the sessions, along with the
number of nodes in the session, that is the most critical for DOF operation.

None/Lossy

This typical combination assumes that no session is created. This means that one node maintains state
about the other (the client), and that the other node utilizes a server that receives datagrams. The lack of
shared state almost always indicates a lossy relationship.

14

Session/Lossy

3.1.3.

Note that the lack of shared state (even though one nodeis likely maintaining state) means that no session
exists. This lack of session means that the server treats each individual datagram as unrelated (although
datagram relationships may be reintroduced due to different protocol layers).

DOF implementations make the foll owing assumptions about these rel ationships:
1. The server does not create a session, it only accepts datagrams.
2. All three addressing types (unicast, multicast, and broadcast) are possible with these servers.

3. Since no session is created, the transport merely provides a notification method for the arrival of a
datagram. Each datagram has identical framing to when it was sent.

4. Each datagram that arrives is tagged by the transport with enough information that a corresponding
datagram can be sent back to the sender by using a server and transport address.

5. Each datagram that arrivesis tagged by the transport with the sender’ s address, allowing other clients
using the sametransport to send adatagram to the sender (thisisthe definition of 'discovering' atransport
address).

Because of their association with a datagram, this category is often called 'datagram' servers. However,
it is actualy the lack of session and lossy nature of the server that is the most critical for DOF operation
(along with the capability of multicast and broadcast).

Session/Lossy

This typical combination assumes that a session is created, but that datagrams may be lost. All nodes
maintain state about the session. Itisvery typical for animplementation to create this combination from the
none/lossy combination just described through the use of different protocol layer functions. Note that the
client likely already maintains state, and so only the server needs to be told to keep track of the particular
client. Notethat some sort of sessionidentificationislikely required aswell, provided by different protocol
layers on top of the transport. This identification relates different datagrams to each other, as well as to
the session information.

DOF implementations make the following assumptions about these rel ationships:

1. The server itself may not create a session, and may only accepts datagrams. The DOF implementation
creates the session if required and not provided.

2. Any session created by the server is automatically destroyed when no longer used. The DOF
implementation does not manage the session in this case.

3. All three addressing types (unicast, multicast, and broadcast) are possible with these sessions. The
session established uniquely identifies a single application on each node.

4. The transport provides a notification for the creation of a new session (if handled by the transport).
Otherwise the session is managed by the DOF implementation.

3.2. General Transport Properties

The general function of the transport is to provide a datagram to the DOF implementation and accept a
datagram from the implementation that will be sent on the network. Each datagram is either in the context
of anode (to be sent to a server), asession, or a server (to be sent to anode).

15

Impact of Security on Datagram Properties

3.2.1.

Servers and the sessions that they create are generally bundled into applications, with each application
running on a node being associated with a unique set of servers (and associated transport addresses). The
assumptions introduced earlier in this section are meant to allow discovery of the relationships between
the servers associated with a single application.

Relating to this association, the overall assumption is that there is a relationship between the type of
server and the associated transport addresses. From the perspective of a node, knowing something about
the datagram properties discussed above allows for mapping from one server type to another. As DOF
implementations deal fundamentally with two types of servers (lossy, and those that create lossless
sessions), this means that there are generally two servers that must be related.

Each transport identifiesthe format and definition of itstransport addresses. Thisinformation is opaque to
the DOF implementation. Further, each transport has an associated M aximum Transmission Unit, or MTU.
This represents the maximum datagram size that can be transmitted using the transport. In general there
is a relationship between datagram size and network efficiency. This relationship is not exposed to the
DOF implementation, other than a recognition that as datagram size approaches the MTU that efficiency
likely drops.

DOF implementations require that the following properties are associated with each datagram, and they
must be provided by the transport implementation:

1. The source transport address. For 2-node sessions, thisis associated with the session itself. For servers
and n-node sessionsiit is likely associated directly with the datagram.

2. The datagram data and size.
3. The source transport address' type. Thiswill always correspond to a unicast address.

4. Thetarget transport address' type. Thisis related to the server in most cases, otherwise with the session
itself.

5. The properties of the server/session that received the datagram:
6. Lossy/Lossless (corresponding to Orderless/In-order).
7. Streaming/Datagram.

8. None/2-node Session/n-node Session.

Impact of Security on Datagram Properties

As mentioned earlier, it is often difficult for an application or transport implementation to accurately
determine the target transport addressing that was used on any particular datagram. Even in the case of
sessions that should be point to point, the possibility of packet injection means that the 'real’ source of a
datagram is suspect. In the case of lossy servers it may not be possible to determine if the client really
used transport unicast, multicast, or broadcast.

This can cause problems for DOF implementations, since application behavior relies on the specific
property values associated with the datagram.

In general, this means that in the absence of security that the client and server must do their best to
determine the actual datagram properties, but that they must realize that the information cannot be fully
trusted.

However, once a security layer has been added then the properties must be trusted. This means that the
source and destination application addressing (not transport addressing) is verified, that the datagram data

16

L ossless Requirements

and sizeis verified, and that the transport address type (unicast, multicast, or broadcast) is verified. When
the security protocol cannot validate any of these properties then it must modify the datagram properties
to represent what is possible, rather than trust the transport-determined property value.

For example, if a session (including the DOF protocol layers) can guarantee that a particular datagram
arrived from a particular sender and can only be received by asingle node, then it can modify the property
to indicate unicast addressing. If, however, the security protocol cannot guarantee asinglereceiver, then it
must modify the property to indicate multicast or broadcast as appropriate. Applicationsthat base behavior
on these datagram propertiesfor asecure datagram must use the property values as modified by the security
protocol.

@ Secure datagram transport properties must represent only secure
information. gof - 2008- 1- spec- 1

This allows applications to determine the level of trust for al information that they receive, even
from the transport layer. Other information that is untrusted may be presented, but should not
indicatethat it is secure (unlessthetransport knowsit is secure). For example, transport addressing
is typically not known to be secure, and so should not be trusted unless the transport indicates
that they are secure.

3.3. Lossless Requirements

3.3.1.

As discussed above, |ossless servers are always associated with a session or connection. The server must
indicate to the implementation that a new session has been created, and the implementation must explicitly
accept the new session.

The following requirements apply to each lossless session accepted by the implementation.

@ Sessions must be monitored and must guard against improper clients.
dof - 2008- 1- spec- 2

A session with anon-communicative or ill-defined client must not be allowed to exist for too long.
There are no explicit timeouts defined in this case, and so the implementation is free to impose
whatever requirements it will. The implementation can use the features of the DOF Presentation
Protocol to ensure that a session remains valid.

Sessions are alwaysinitiated by clients. The client must determine the appropriate target transport address
for the server. For lossless sessions, the client must maintain the session, and is primarily responsible for
ending the session. If the client determines that the session is no longer required then it should use the
transport to close the session in away that the server session is also closed. This should involve correctly
closing the session at each layer of the protocol stack, beginning with the application layer and ending
with the transport layer.

However, it is possible for the server to terminate a session as well. In this case the client must remove
the state associated with the session at each layer of the stack.

Traffic Symmetry

The DPS frequently runs over lossless transports like TCP/IP. These transports are typically optimized for
lossless bi-directional data, and can have performance i ssueswhen used to transmit uni-directional, bursty

17

Lossy Requirements

datagrams. Unfortunately, many small-footprint stacks maximize this performance problem by limiting
their implementations. To minimize problems it is best that each datagram be acknowledged before the
next can be sent, or at least that the datagrams flowing in each direction are roughly equal.

There are two common optimizations specific to TCP/IP that can cause performance problems in these
situations. Thefirst isthe Nagle Algorithm, which can slow the sending of dataassuming that it isdesirable
to combine many small datagrams into fewer larger datagrams. The second is the introduction of a delay
on the ACK assuming that it is better to piggyback the ACK on a data datagram than to send it with no
data. The combination of these two optimizations can lead to poor performance of the DPS on TCP/IP.

There are typically options to disable the Nagle Algorithm (TCPNODELAY). Because this affects
outgoing traffic there islittle more that can be done to optimize performance other than disabling it.

The second optimization, that of delaying an ACK until data exists to "piggyback" it on, is typically not
configurable. The answer to this performance issue isto ensure that the protocol in question is symmetric
- meaning that each datagram sent in one direction elicits a response datagram going the other direction.

Unfortunately, a typical use case is to establish a session, establish state, and then wait for responses.
In this case, little or no traffic moves in one direction and many periodic datagrams move in the other
direction. Thisistheworst situation for both the Nagle Algorithm and the ACK-delay problem. The Nagle
Algorithm delaysthe commands, combining theminto larger datagrams. The ACK messagesdel ay because
no datagrams are going in the other direction. Thisis standard problem with asymmetric trafficin TCP/IP.

The DPS provides the commands (through the Ping and Heartbeat commands) to allow for symmetry in
the application protocols. This means that if an application protocol knows that it isin a non-symmetric
situation and wants to even out the datagrams that it can use the DPP common commands. This behavior
should depend on the transport, as it knows whether symmetry is beneficial.

3.4. Lossy Requirements

As discussed above, lossy can refer to both sessions (between nodes) and servers (between a node and
a server). In the case of a server there is no indication of communication except for the arrival of a
datagram. Any session creation is the responsibility of the DOF implementation. As discussed earlier, the
client transport implementation should be able to map between these inbound datagram responses and an
associated |lossless server transport address.

@ Datagram responses should be mappable to an associated lossless server
transport address. gof - 2008- 1- spec- 3

A general architecture principle discussed earlier is that a datagram response can be used to
determine a corresponding lossless server transport address (if one exists). This means that the
transport information from a datagram response should contain enough information to identify
the transport address associated with alossless server (on the responding server).

@ Lossy commands should be mappable to an associated lossless server
transport address. gof - 2008- 1- spec- 4

An outbound lossy command should allow any corresponding lossless server transport address
to be determined by the recipient. This alows any command to be used to identify the transport
address of the client’ slossless server.

18

Multicast Requirements

3.5. Multicast Requirements

Servers may have configured transport address for transport multicast communications. |n most cases, this
transport address used by the DOF implementation should be standardized for the transport. This allows
greater compatibility between systems. If a set of applications (asystem) wantsto operate in isolation then
they may use a different multicast addressing, athough this additional addressing should be registered
with IANA (for IP) or other applicable standard body.

Even in the case of systems using different multicast addressing, the servers should still use the
standardized transport addressing in addition to their system addressing.

@ Multicast servers should use registered, consistent transport addresses.
dof - 2008- 1- spec-5

This requirement helps with interoperability of devices.

3.6. Address Discovery

In order for a client to communicate with a server it must know the appropriate transport address. This
information is typically obtained in one of three ways:

1. Static configuration. The client can betold explicitly whereto connect. This method isaways possible,
but is usually inflexible and generally not recommended. If static configuration must be used (for
example, inthe case of WAN system where discovery isnot possible), then naming services (like DNS)
should be used. The use of afixed transport addressis strongly discouraged.

2. Discovery. Addresses can be discovered based on multicast discovery. Thisis more flexible than static
configuration, but requires multicast to be enabled on the network and can only discover local servers.
Discovery does offer the potential for minimal configuration.

3. Dynamic configuration. Many transports support dynamic configuration. For example, DHCP can be
used on | P-based networks to configure DOF properties. Like discovery, dynamic configuration offers
the potential for minimal configuration. The use of standard mechanisms to configure DOF properties
(such as additional fieldsin a DHCP request) should be registered with the applicable standard body.

3.7. Transport Specifications

Each transport that can be used with DOF systems must have a specification document. The specification
must outline how thetransport requirements detailed here are satisfied. It must also define any standardized
addressing and other properties.

The transport specification must indicate the following:
1. Theformat and meaning of its transport addressing.
2. Thetypes of transport addressing that are supported (unicast, multicast, broadcast).

3. Thetypesof serversand sessionsthat are possible (lossless, lossy, 2-node, n-node), with any associated
MTU information.

4. The mapping that is possible between different server types based on transport addresses.

19

Transport Specifications

5. The different types of configuration that are possible, including the provisions for any dynamic
configuration and how DOF properties can leverage dynamic configuration.

Thisinformation is required for determining the transport context information.

Up to this point the discussion of different transport addresstypes has not been combined with the different
types of transport configurations. Keep in mind the three types of transport combinations discussed: none/
lossy, session/lossy, session/lossless. These can be combined with three different address types: unicast,
multicast, and broadcast. However, only the 'none' type can utilize the different addresstypes, with sessions
always being associated with unicast addressing.

Each datagram used by DOF implementations can therefore be categorized by its requirements in three
areas:

1. Whether asession is required, and the number of nodes that can be in the session.

2. Which addressing is allowable (unicast, multicast, or broadcast).

3. Whether the session must be lossless (implying in-order), or if lossy is allowed (implying orderless).
This can be summarized as the 'Session' requirements and 'Addressing' requirements. Session is one of:
None, Lossy (2-node, n-node), or Lossless (2-node, n-node). Addressing is one of (Unicast, Multicast,
Broadcast).

Each DOF PDU will indicate the session and addressing requirements that it has. In the case of a session
the source of the session will be identified.

20

4. DOF Protocol Stack (DPS)

The DOF Protocol Stack (DPS) is the foundation for all DOF protocols. These protocols operate on a
variety of platforms, including small deviceswith limited resources. Even though the small devicesrequire
optimization, the protocols follow the OSI model of layer separation as much as possible.

The DOF Protocol Stack also operates on a number of different transports. To the extent possible, the
DPS and other DOF Protocols do not require specific information about the transport being used. For
example, the protocols do not expose details of transport-layer logical addressing at higher levels. In the
same way, implementations of the protocols maintain this same transport-agnostic view. Later sections of
this document note specific transport requirements.

The lowest layer of the DPS is the DOF Network Protocol (DNP). This layer provides the minimum
requirements in order for the DPS to be identified (including versioning), and provides the datagram
length information on streaming transports. The DNP also implements some transport layer functionality,
including a sense of addressing that can augment what the transport provides.

The session and presentation layers are combined in the DOF Protocol Stack as the DOF Presentation
Protocol (DPP). DPP handles encryption and replay-attack prevention (functions of the presentation layer)
through encryption modes of operation. It does not handle retries or network-layer acknowledgements.
DPP does provide the foundation for commands and responses, including operation identification and loop
detection.

Finally, thereisthe DOF Application Layer. Other references discuss specific DOF application protocols,
although some discussion common to all application protocols appears here.

4.1. General Principles

4.1.1.

The following sections discuss genera principles that govern the DPS and its associated application
protocols. These topics relate generally to both DNP, DPP, and application layers, although the specifics
may apply more to one than the other.

These principles are also not dependent on the version or layer used. This means that they apply to the
stack as awhole, and that any application protocol can depend on the behavior.

Reserved Bits

Throughout the DPS and DOF application protocols, there are references to 'Reserved' bits. The following
discussion appliesto all of thesefields.

This protocol specification defines the meaning of every bit that passes over the wire. In many cases, it
does so by defining a field and then defining the range of values that can appear in that field. In other
cases, it definesa'bit field, and in doing so leaves some bits as available. These bits may require aconstant
value, or the specification may indicate that they are Reserved.

In the absence of other requirements, the handling of these remaining bits would be ambiguous, which
is not agood idea in protocol design. However, the possible future use of these bitsis restricted because
existing implementations will not understand any newly defined behavior.

Any future use must then:

1. Not changethe 'format’ of the PDU, as existing implementations would not understand how to read the
PDU (or would read it incorrectly).

21

Timeouts

4.1.2.

4.1.3.

2. Not affect the meaning of the command or response in away that the receiver must understand.
3. Only introduce optional behavior that does not change the format of the command or response.
Note that any changes that do not meet these requirements necessitate changing the protocol revision.

Handling these bits requires correct management. The following rule defines correct behavior.

@ Senders must set all RESERVED bitsto zero. gof - 2008- 1- spec- 6

The zero value ensures a known state (which will be the default) for any new behavior.

@ Receivers must ignore all RESERVED bits. gof - 2008- 1- spec- 7

This ensures that old implementations will ignore behavior defined in the future, although they
will accept the PDU independent of the value.

Timeouts

A general requirement of the DPS is that non-communicating or ill-behaved sessions should be detected
and terminated/closed as quickly as possible. Ill-behaved sessions are particularly dangerous (from a
security perspective) during stack establishment. A goal is to force negotiation as quickly as possible,
without being so restrictive that slow network links cause problems.

In order to force negotiation quickly each layer in the protocol stack may definetimeout behaviors.
These timeouts are serial, not parallel. Thismeansthat asingle timer for each session can enforce
al timeouts. The behavior of the stack when a timeout occurs is uniform: the implementation
terminates the session. Reaching each milestone in stack negotiation resets the timeout based on
the requirements of the new stack layer or layer set.

Thisgeneral rule appliesthroughout negotiation and through the authentication phase. The singletimer use
does not continueinto the application protocols, but may still be used (based on the transport requirements)
to determine communication failures. These types of timeouts are dependent on the implementation.

Protocol Discovery

Different nodesin the same network may support different versions of DPSlayersand different application
protocol versions. A primary goal of DOF protocolsisinteroperability, and so it isimportant to be able to
discover these different nodes and communicate with them if possible.

At the lowest layer (transport), there should be the ability to communicate with all nodes. This
usually requires either multicast or broadcast. Specific system implementations may utilize non-standard
addressing in order to localize communication. Independent of specific system requirements, DOF nodes
should still listen on the standard addresses and ports defined for the transport in order to facilitate
discovery by general nodes.

The ability to speak multiple versions of a protocol is generally associated with a gateway. However, it
is possible that some nodes (clients or servers) may not function as a gateway, but may speak different
protocol versions.

If these nodes simultaneously attempted to use all of the versions that they can, worst-case traffic would
result. Thisis because they may be sending protocol versions that no other node understands, and so the
traffic is wasted.

22

Protocol Negotiation

4.1.4.

The same is true of a gateway. If gateway nodes simultaneously used all of their versions then the same
worst-case traffic would result. It only makes sense for a gateway (or a multi-protocol server or client) to
speak versions that others on the network are able to understand.

DOF protocols provide amethod for discovering protocol versionsin an optimized way. Asarequirement,
the nodes must be capable of using a multicast or broadcast transport. In general, the difference between
'node discovery' and protocol discovery isthat in protocol discovery the goa is not to identify each node,
but rather each protocol and protocol version. Whether there are 10 nodes speaking a version or 1,000
nodes is not important (that number can be determined later by using node discovery). This alows for
some specific optimizations for protocol discovery.

Asan example of the problem of multipleversions, consider thefollowing. A company sellsan DOF-based
sensor product. The product implements specific versions of the DNP, DPP, and applications. The sensor
only responds when queried. Y ears pass, and the customer has removed the original product that used the
sensor, but has not removed the sensor. The customer installs a new product, which speaks different DNP
and DPP versions.

How can the new product speak to the old sensor? Without aid (some sort of gateway) it cannot, unlessthe
new product also speaks the older protocol versions. Assuming that it does not speak the older protocol
version, then a gateway (a special node that speaks multiple protocol versions) is required. How can such
a gateway discover which DNP and DPP versions are available on a network?

One solution, discussed above, would be to cyclethrough all possible versions, discovering nodesthat use
each combination. Thisis expensive in terms of network traffic. Another solution would be to have each
node advertise itself on the network periodically, but thisis also expensive in terms of network traffic that
would be mostly redundant.

In order to solvethis problem, DOF specifications define version zero of each protocol (and protocol layer)
asaquery protocol. Each nodeisrequired to support version zero, although it does not encapsul ate normal
PDUs. The version zero protocol for each layer follows a pattern that allows version discovery.

This means that all nodes will support at least two versions of each stack layer: version zero (for version
discovery) and some other version (for PDU encapsul ation). |mplementations drop unrecognized versions.

@ Implements must drop PDUs that use unrecognized versions on lossy
transports. gof - 2008- 1- spec- 8
Unrecognized PDUs may arrive on lossy transports. This means that dropping PDUs using

unrecognized versions on a lossy transport is safe. There is no indication on the receiving or
sending node when this happens.

Note that by supporting the query version (version 0) a node is only required to respond to queries. If a
given node has no reason to discover other version information then it never needs to initiate a query.

Protocol Negotiation

Different nodes in the same network may simultaneously be using different versions of DOF protocols,
including the DNP, DPP and applications. This means that when two nodes communicate, they need to
determine which versions they will use.

If the nodes are using alossy session or server then the sender can either assert aversion or use version
discovery (unicast) to determine the versions spoken by the target. If the sender asserts a version that the
receiver does not understand then the receiver silently drops the datagram.

23

Protocol Negotiation

When two nodes establish a lossless session, they have the benefit of both bi-directional non-broadcast
communication and shared state. This makes the negotiation of protocol versions possible. It is also
possible that a lossless session spans local networks where protocol discovery (which uses a multicast or
unicast datagram) is not possible. This means that protocol negotiation is required for the two nodes to
communicate.

There are two phases to protocol negotiation of the DPS on alossless session. First, the nodes negotiate
DNP and DPP (simultaneously). Following that negotiation (and assuming successful negotiation) a
specific application protocol, the DOF Session Protocol (DSP), is used to negotiate the application
layer protocols and their options that will be used on the session. This negotiation includes the specific
authentication and key distribution protocols that are required.

@ Two-node lossless transport sessions immediately negotiate protocols.
dof - 2008- 1- spec-9
Protocol version negotiation takes place immediately after the transport-level lossless session is

established and before any application PDUs are exchanged. It begins with the client sending a
datagram.

Negotiation of the protocol version begins with the client. The client identifies the DNP and DPP that it
prefers (possibly the only ones it understands) by sending a two byte datagram (one byte DNP, one byte
DPP) using only the protocol version bytesand omitting flag bytes, meaning that the flag bits must be clear.

ﬂ Thisdefinition of negotiation assumesthat |0ssless 2-node sessi ons use amechanism that provides
in-order guaranteed delivery. It also assumes that nodes may send any number of bytes that the
other side of the session receivesin atimely fashion.

If the server can accept those protocol versions (even if it does not prefer them because they are older and
lesscapable), it echoes atwo-byte datagram using the same protocol versions, or alternatively it just begins
using those protocol versions by sending a datagram that uses them. Both the client and server know that
they are speaking the same versions, and the negotiation of application protocols begins (described further
in the section on Application Protocols). The server knows the protocol versions because it echoed the
datagram (acceptance), the client knows because it received a datagram with the same protocol versions
that it sent.

@ Negotiation of version isin decreasing order of desire. gof - 2008- 1- spec- 10

Each node must have alist of the versions of DNP and DPP that it can speak. It orders these by
most desirable to least. Negotiation always begins with the most desirable, and progresses to the
least desirable.

@ Accept thefirst valid negotiated versions. gof - 2008- 1- spec- 11

If a node receives a combination of versions of DNP and DPP that it can speak (meaning they
are understandable), it must accept it even if it does not prefer to speak those versions (possibly
because they are less optimal).

If the server cannot understand the protocol versionsrequested, it respondswith atwo byte datagram using
the protocol versions that it prefers (potentially the only ones that it understands), and the roles of client
and server are reversed (for the purposes of further negotiation). This means that the old 'client’ nodeisin

24

Protocol Negotiation

therole of responding with either an acceptance, beginning to use those versions (by sending a datagram),
or another 'rgjection’ in which case the roles are reversed yet again.

Upon receiving atwo byte datagram during negotiation with protocol versionsthat are not understood, the
response is always a two byte datagram with the next preferred protocol versions that are understood or a
full datagram that uses a set of versions. This proceeds until either side has no untried protocol versions
or abad datagram (non-negotiation and using versions that are not understood), at which point the session
is terminated.

Itiscommon for devicesto implement asingle set of network and presentation protocol versions. It isalso
common for devices to initiate sessions with more powerful nodes. This means that in the typical case a
client (the node sending the first negotiation bytes in the common case) speaks a single set of protocol
versions. The same situation can apply to a server.

In this case where the sender speaks only asingle set of protocol versions, then thefirst datagram sent may
include the flag byte, control fields and encapsulated application data. Thisis 'asserting' protocol versions.
Thiskind of assertion is always avalid response during negotiation, and the client may immediately useit.

ﬂ The presence of an application PDU determinesthe difference between ‘asserting’ and negotiating
onasession. All negotiation PDUswill lack an application PDU. All asserted PDUswould contain
an application PDU.

@ During negotiation, immediately terminate 2-node session on receipt of
unknown Versions. gof - 2008- 1- spec- 12

During negotiation of a 2-node session, if the server or the client receives a non-negotiation
datagram that includes protocol versions that it does not understand, the receiver must terminate
the session.

If the server speaksonly asingle set of protocols, it may preemptively send afull datagram with aflag byte,
control fields, and application data when the transport session is established. The client would treat this
as the end of negotiation. In the case that the client cannot speak those versions, the client terminates the
session. If the client had also asserted and the versions did not match then the client and server would both
terminate the session. Thisis correct behavior because an assertion isonly possibleif the node understands
only asingle set of versions. Any mismatch of asserted versions means communication is not possible.

During negotiation, when a node reaches the last sets of versions it understands, it is optimal to
assert those versions. For example, a hode that speaks A, B; and A1, B, may send A,, B, as
a negotiation datagram. Assuming that the other side continues negotiation (implying that those
versions are not understood), then the node can continue to A;, B;. However, in this case if
the other node tries to continue negotiation there are no more versions to try and the node will
terminate the session. Asserting A1, B; at that point saves the node from continuing to negotiate
when it is pointless.

@ DNP/DPP ver sion negotiation must complete within 10 seconds. g4of - 2008- 1-
spec-13

Measured from when the client establishes the transport session, if the stack cannot converge
to an agreed set of network and presentation protocols within ten (10) seconds then the DPS
session must terminate. Convergence is the time at which the transport client sendsiits first non-
negotiation datagram.

25

Transport Addresses

4.1.5.

4.1.6.

Transport Addresses

Throughout the DPS documents, severa references to transport addresses exist. The use of this term
‘transport address means a unique identification of the source of some communication on a specific
transport. It also identifies an individual target on atransport.

Different transports may use similar logical addresses. There can aso be multiple interfaces speaking the
same protocol with identical addresses. The stack should consider al these cases as different transport
addresses.

There are transports that lack a well-defined sense of addresses, or where implementations make it
necessary to add additional data in order to distinguish addresses. To resolve this problem the DPS adds
its own sense of alogical address, called an DNP (DOF Networking Protocol) address. It is important to
understand its relationship between DNP addresses and transport addresses.

@ Correctly distinguish transport addresses. gof - 2008- 1- spec- 14

Implementations must track the source of communication such that it can send responses back
to the sender. This source (and response destination) is called the "transport address," even
though it will likely need to contain additional information beyond the actua transport logical
address. |mplementations must permit DNP addresses, even if the transport itself provides unique
addresses.

Inthe case of sessions, the notion of ‘transport address really relatesto the session and not just thetransport.
For example, it is possible to have both a UDP datagram session and a TCP streaming session that involves
the same 'transport address.” In this case, the 'transport' is also part of the 'transport address,’ even though
in both cases the underlying transport is I P.

Thisdistinction is critical because many stack issues relate to the session, and not directly to the 'transport
address when used in the more limited sense.

Loopback Prevention

A common issue with broadcast and multicast transports is receiving datagrams that the node sent, either
because of operating system problems or because of network echoes. In order to prevent each layer of
the DOF Protocol Stack from needing to address this issue the transport layer of the DPS must ignore
these datagrams.

The transport (referring to the layer directly below the DNP) is uniquely able to remove these echoes
because only it is aware of the specific meaning of transport addresses. It also knows (or can know) the
different types of sessions and serversthat are in use, and whether it is possible for loopback to occur.

Inaddition, if atransport isnot ableto determine on its own whether loopback will occur, thereisaspecific
DNP version (127, described later) which a transport implementation can use to determine if loopback
is occurring.

@ DPStransportsmust correctly r g ect loopback datagramssent from thesame
application. gof - 2008- 1- spec- 15
As described, all DPS transport implementations must correctly reject datagrams that originate

from the same application. Application protocols may rely on the fact that they will not receive
|oopback datagrams.

26

Invalid PDU Handling

4.1.7.

Stated another way, all DPS transport implementations must reject inbound multicast or broadcast
datagrams that sent by the receiving application. Pay particul ar attention to the wording — datagrams from
the same application must be rejected, not the same node.

In general, this means that implementations must compare the source information (for example, host,
and port for UDP) for inbound datagrams with the source information for each session for the receiving
application. If the source information matches, then the receiver drops datagram. If such a comparison is
not possible or may not result in precisely correct results then the implementation may use DNP version
127 to send a datagram and watch for loopback.

As afurther example, two applications running on the same node may be receiving multicast datagrams.
Both applications hear datagrams sent from the first application, but only the first application drops them.
The same istrue for the second application and its datagrams.

Invalid PDU Handling

Receiving any invalid PDU signals either a corrupt communication channel, loss of state, or a possible
attack on the protocoal. Invalid PDUs include things like invalid op-codes, malformed flags or other fields,
PDU under runs and over runs during parsing, or other structural problems. Invalid PDUs do not include
cases where the structure and references are correct, but the operation fails to execute for other reasons.

Throughout the entire DOF Protocol Stack and al related application protocols, the requirements for
handling invalid PDUs are identical. The primary consideration is maintaining correct session state (both
transport and DPS). If session state cannot be ensured, then the session (whether transport or DPS) must
be closed.

For session 'none’ state management is not a concern, because there is no DPS session state by definition.
However, thereis still transport state to manage. For example, streaming protocols like TCP may not be
abletoidentify PDU boundarieswithout state. If thisstateis confused by aninvalid PDU then the transport
session stateis lost.

In most cases, datagram PDUSs can be dropped without loss of state, while streaming PDUs cannot be
dropped without loss of state. Streaming sessions usually have an in-order, guaranteed delivery feature
that is leveraged to minimize state transferred in each PDU (for example, packet sequence numbers for
security). In these cases, dropping PDUs will affect the state and must therefore result in the session being
closed.

@ Correctly handleinvalid PDUs, dropping sessionswhen correct state cannot
be ensured. gof - 2008- 1- spec- 16

As described, all DPS transport implementations must correctly reject datagrams that originate
from the same application. Application protocols may rely on the fact that they will not receive
loopback datagrams.

4.2. Operations

Operations are a genera feature of the DOF Presentation Protocol (DPP). A complete understanding of
operations requires understanding the principle (described here), the syntax (described in the appropriate
DPP version section), and usage that is presented in each of the application protocol descriptions which
use operations. This section introduces operations because they form the basis for the requirements and
terminology used throughout the following sections.

27

Operations

Operations are part of the DPP because they form a common platform for all application protocols to
build on. They are also the foundation of providing equivalent behavior across different transports. Since
ageneral goal of the DPSisto hidethiskind of transport information from the application, it makes sense
to define operationsin the DPS.

Operations also form the foundation for command/response handling in DOF systems, and o it is useful
to share the specifics between all of the different application protocols.

Finally, operations provide the basis for detecting and managing loops and duplicate commands. Thisisa
key requirement for DOF mesh networking, which allows network topol ogies that include loops.

The protocols use the word 'operation’ in many different ways. The most general is any command or
command/response pair used by an application protocol. Note that in this case what the application terms
an 'operation’ may or may not be an operation to the presentation layer. This is the case if the operation
does not include an operation identifier.

There are two primary ways that DOF protocols uses operations:

1. FLOODED: Inthis case, a node sends a single operation over multiple links, with the goal of complete
coverage of some set of nodes (including all nodes). To prevent infinite looping, the presentation layer
must maintain state and uniquely and globally identify each flooded operation. The reason is that the
same operation may arrive again (from adifferent source) dueto loopsin the network topology. It isthe
responsibility of the presentation layer to handle this situation, and state is required to accomplish this.

2. DIRECTED: In this case, an application determines the propagation of the operation based on
application state. Each node directs the operation forward to another node in such a way that 1oops
will never occur.

Because stateisrequired at the DPP layer in the FLOODED case, each DPP version must be abletoidentify
whether an operation is FLOODED or DIRECTED.

@ Correctly maintain the DIRECTED and FLOODED state of operations.
dof - 2008- 1- spec- 17
A node may convert aDIRECTED operation to aFL OODED operation, but not the reverse. Once

an operation is FLOODED then a node must never convert it back to a DIRECTED operation.
Each DPP version defines the methods used to guarantee this behavior.

Operation identification is a critical requirement of the DPP, and the method used is to assign each an
operation identifier. The DOF Common Types document defines the specific format of ageneral operation
identifier, which applies across al protocol versions. There are always two pieces of data determined by
the creator/owner of an operation: the SID (Source ID) and the Operation Count (OPCNT). While the
genera format of the OPID is common, each specific DPP version defines the methods used to represent
an OPID in a PDU. DPP versions may define various compression techniques in order to save space in
the PDU, all of which must be transparent to the DPS.

In addition, while the definition of operation identifiersisthat they are globally unique, not all operation
identifiers are global. Some commands, particularly those that are flooded through a network, require the
global use of the same operation identifier. There is a cost to doing this: compression of the operation
identifier may not be possible because some compression methods may be dependent on the source node
information. Some directed operations might benefit from having their operation identifier change at each
node in order to alow better optimization. This is generally possible for DIRECTED operations — it is
never possible for FLOODED operations.

28

Rulesfor SID Use

4.2.1.

The presentation layer passes the operation identifiers, but the application assists in their management.
Not all operations require an operation identifier, and some operations may have their operation identifiers
mapped by a node to allow size optimizations. The application must communicate these requirements to
the presentation layer so that appropriate information is included in the presentation headers. Received
operations, the current operation state, the passage of time, and input from the application manage the
lifecycle of the operation.

The SID is the primary source of uniqueness for the operation identifier, with each source assigning a
unique count for the operationsthat it creates (the OPCNT). The SID is associated with an application. In
cases where the implementation knows that a given node only provides a single application then it may
associate the SID with anode. However, if the node can run multiple applications that do not share state,
then each must use different SID.

Operation identifiers form the basis for directing responses back to the command. The DPP identifies
responses and they use the same operation identifier as the corresponding command. Both commands and
responses are operations.

@ Eachidentified operation must useauniqueoperation identifier. yof - 2008- 1-
spec-18

Itisaserious error to have two active and different identified operations with the same operation
identifier. If this occurs then the behavior is undefined.

@ Responses use the correct operation identifier. gof - 2008- 1- spec- 19

Responses always use the operation identifier of the corresponding command, if present. Note,
however, that the specific PDU format used may differ from command to response. Nodes that
map operation identifiers between arrival and forwarding must appropriately map the operation
identifier of the response back to the original.

Rules for SID Use

The SID isthe primary unique part of an operation identifier. This means that they are typically large (to
achieve the goal of global uniqueness). The SID used on a secure connection requires the requesting of
permission to use the SID as discussed below.

A typical casefor alimited-resource nodeis:

1. It runson asmall platform.

2. It knows the details of its hardware.

3. No other application is running on the same hardware.

Thisisan ideal case for determining a SID because the SID can be afunction of any unique information
associated with the node.

However, there are situations where one or more of the following are true:
1. Theclient or server is not unique to the node (for example, a client running on an operating system).

2. The application cannot determine the specifics of the hardware, and so a unique SID is difficult to
determine.

29

SID Security

4.2.2.

4.2.3.

3. A nodeisacting as a bridge, and may need to represent multiple nodes.

In these cases, the application must choose the SID very carefully. In general, each instance of arunning
application (over time) should use a unique SID. The SID may reflect both some node property and also
a sequence number or other unique factor to make each program instance unique. The goal isto prevent
reuse of operation identifiers, even accidental reuse.

@ A single transport address (including DNP logical addressing) must be
associated with asingle SID in each Security Domain. gof - 2008- 1- spec- 20

Thisrequirement allows caching of SIDsbased on the sending transport address. Thismeansthat a
SID must uniquely identify thelogical sender. Thismeansthat two logically separate applications
must use different SIDs, even if they run on the same node. It also means that applications that
share transport addresses must use the same SID and guarantee that their operation identifiers
never collide, or the applications may use an DNP logical address. Note that the requirement
applies to each individual Security Domain, where unsecured traffic is treated as if it werein an
"Unsecured Security Domain®.

This discussion results in the following points for aclient or server that cannot determine that it is unique
on anode:

1. It must determine a SID and use it consistently and universally.
2. 1t must choose the SID such that it will not cause operation identifiersto alias one to another.
3. It may use atransport-based operation identifier with additional unique information.

SID comparison (and operation identifier comparison) is independent of the specific SID format used in
aparticular PDU.

@ Handle different OPID representations during comparison and forwar ding.
dof - 2008- 1- spec- 21

The common OPID format defines OPID comparison, independent of the received PDU format.

SID Security

Using a SID on secure sessions requires appropriate permissions. These permissions are associated with a
particular DPP version, and so the particular permission formats are dependent on the DPP version used.

Clients and servers must negotiate any required SID permissions as part of the initial permission requests
for the session, since without the permissions neither can send additional secure operations (including a
request for additional permissions).

Operation Graphs

The statements above about DIRECTED and FLOODED operations reference state required for a
DIRECTED operation, and state maintained for FLOODED operations. This section discusses these state
requirements.

In order to manage a FLOODED operation, each node must maintain information about the operation in
order to recognize duplicates and make decisions about how to handle the duplicates. Recognizing the

30

Operation Graphs

duplicates requires a common identifier, which is the operation identifier. Using the operation identifier
means that it must not change as it propagates through the network — a signature requirement for
FL OODED operations. Another key requirement isthat state for the operation must persist throughout the
network in order to prevent loops and ringing.

The ultimate requirement for FLOODED operations is to create a DAG (directed acyclic graph) for each
FLOODED operation. The root of the DAG is the original operation source, and it includes all other
appropriate nodes as children. This ordered structure means that any node in the DAG has a sense of
its parent, called the 'source.’ Operations can outlive connections, and so the DAG for an operation may
change over time.

i)

The DAG resulting from a FLOODED operation is the basis for establishing new operation state. To
understand this, examine two common cases: responses and reactions.

Notethat therulesallow that the structure of the DA G for agiven operation may change during the
lifespan of the operation. This can occur because of either new connectivity or lost connectivity.

The DOF DPP layer defines response operations. The definition allows for specific behavior for the
response, as follows:

1. Responses always follow the DAG of the operation to which they respond. This definition means that
responses never have to deal with loops.

2. Special responses, called 'final’ responses, finalize an operation, resulting in the removal of operation
State.

Responses are immune from many issues regarding state management, always relying on the established
state of asingle ‘command' operation.

@ Unless specifically allowed by a PDU, transport unicast is required for all
resPONSES. dof - 2008- 1- spec- 22
Responses traverse the DAG of the operation from child to parent back to the original source.

Sending a response to node that is not the source is highly unusual, and only allowed in cases
where the PDU explicitly defines the behavior.

Contrast the behavior of aresponse with the class of operationscalled ‘reactions.’ A reactionisan operation
that results from a causing operation, but that is not aresponse. There are two primary casesfor areaction:
a pseudo-response and a general reaction. Pseudo-responses follow the rules for a response (traversing a
single DAG to asource) and do not require any special discussion. General reactions are more complicated,
because they are not restricted to asingle DAG.

Note that there is an assumption in discussing a reaction that it has available to it the DAG of some
(possibly multiple) causing operations. Each of these operationshasan associated DAG. However, reacting
to multiple DAGs by way of combining them in general does not create a DAG. This means that while
each operation itself has a DAG, reacting simultaneously using multiple DAGs must follow the rules of
aFLOODED operation. To understand this, imagine a network in which each node establishes a causing
operation at the same time. A node, anywhere in the same network, that sends a reacting operation will
need that operation to go to every node in the network — and must in the process handle the presence of
loops and prevent ringing. Thisis exactly the definition of a FLOODED operation.

Finally, note that reactionary operations may themselves establish a DAG. However, they must do this
based on their own state and rules. Other operations may use this DAG, and in doing so, they are not
FLOODED. Thisisin fact the definition of a DIRECTED operation. This implies that all DIRECTED
operations must identify the method used to establish the DAG that they will use.

31

Operation Lifecycle

4.2.4. Operation Lifecycle

The DPP manages operations based on datagrams sent on the network. These datagramstransfer state from
one node to another, and based on the operation both the sender and the receiver must manage the state.

The management of operation state is a critical security issue. Receivers must validate a datagram, from
a security perspective, before the receiver modifies any operation state based on the datagram. The DOF
Security Specification discusses this at greater length.

Programs create and manage operations, and so operation identification and ‘program' identification are
related. There are two identifying marks for a program in an DOF network:

1. Thetransport addresses that it uses to create (send) operations.
2. The sourceidentifier (SID) that it uses.

This means that an operation source equates to a transport address. The operation itself relates to a SID,
although maybe not the SID of the sender (in the case of an operation forwarded through another node).

The state associated with an operation issimilar to the state of asession: it hasabeginning, it is maintained,
it can be cancelled (closed), and it allows state to be shared between endpoints. A key difference between
sessions and operationsisthat operations distribute throughout anetwork (typically amesh network). This
section discusses common aspects of operations and the lifecycle controls that are included in the DOF
specifications.

To emphasize this last point, the state associated with an operation distributes equally among all
participating nodes. There is no way to use a single operation to maintain different state between each
receiver and the sender. Shared state that is limited to a single sender and receiver requires its own
operations.

For any operation, each node isin one of the following states:

1. Initid: The node first identifies the operation and creates state.

2. Retry: The node updates the state of an existing operation.

3. Lost: An operation is lost when the source of the operation is no longer available while the operation
remains active. Thereisarelated flag called Proxy Lost, which meansthat anode is aware of someone
else’ s source being lost while its source remains valid.

4. Timeout: The operation has timed out, meaning that it reaches the end of its defined lifecycle.

5. Cancelled: The operation has ended based on direct action of the source.

Thereceipt of a datagram causes most changes to operation state. The exception is the Timeout state, and
sometimesthe Lost state. Thereis aspecial case possible where an operation arrives (Initial state), but has
already timed out (Timeout state). There are several rules for handling this situation:

1. Receivers must pass application operations (those without operation identifiers) to the application. The
application must be able to determine that the operation has timed out. Since there is no operation
identifier, the receiver does not create presentation layer state.

2. Receivers must passidentified operationsto the application. The application must be able to determine
that the operation has timed out. Even though an operation identifier is included, the receiver should
use the fact that it has timed out to prevent creating presentation layer state. Note that the node will

32

Operation Lifecycle

drop any responses to these operations, as there is no presentation layer state to associate the response
with the operation.

3. Asafurther special case, receivers must ignore FLOODED operationsthat have timed out. This means
that both an operation identifier and duration are required for FLOODED operations.

@ Correctly handleimmediately timed-out operations. gof - 2008- 1- spec- 23

The behavior in this case must be the same as receiving and processing the operation followed
by the operation timing out. However, it is permissible for the implementation to optimize the
handling of these two phases. Receivers assume in this case that the source of the operation has
aready timed out, and so do not send responses based on DPP state. Receiversignore FLOODED
operations that are timed-out.

The following sections discuss the DPP requirements for operation management. Application protocols
will have their own requirements.

4.2.4.1. Operation State: Initial

Theinitial stateisentered whenever anew operationidentifier isreferenced that has not been seen before. It
usually happens because of the receipt of anew application PDU, with the operation information extracted
from the DPP.

9 Itispossible that aretry on one node looks like a new operation on another due to datagram loss.
The definition of the response behavior of theinitial PDU and aretry PDU are identical for this
reason.

In order for the operation to enter the Initial state, it must be authentic and represent avalid operation in the
context of the sender and receiver. For example, this may mean that the sender has permission to perform
the operation. The receiver must utilize the application to make this determination.

4.2.4.2. Operation State: Retry

Retries occur whenever anew, valid PDU references an existing operation identifier. Datagram loss may
cause problems distinguishing between the Initial and Retry states, and so applications avoid defining
different behavior for each.

6 Thereis adifference between DPS retry and transport retries (or retransmit). On lossy transports,
itisbeneficial to send datagrams multipletimesin order to improve the changes of reception. This
isnot the same asan DPP retry, becausein this case the PDU remains unchanged. It isatransport
reguirement to ignore these retransmissions.

Operation retries serve to distribute new operation state, including extending the lifecycle of the operation.
Receivers must exercise care not to make changes to existing operation state until the application validates
the operation.

4.2.4.3. Operation State: Lost

Nodes enter this state for particular operation when the source of an active operationisno longer available.
This document discusses the specific handling of this state later on, but in general resultsin asearch for a
new source. The lack of a new source causes the operation to enter the Timeout state.

The commands used to search for a new source are dependent on the specific DPP version; however the
logic is global and described later.

33

Operation Mutability

Related to the Lost state is aflag called Proxy Lost, which indicates that a node is aware of another node
that isin the Lost state while its own source remains vaid.

4.2.4.4. Operation State: Timeout

Each operation definesits duration. Exceeding the duration causes the operation to enter the Timeout state.
This removes all state for the operation, but does not cause sending any datagrams. Note that operations
will timeout uniformly throughout the network (with some possible differences because of clock skew).

4.2.4.5. Operation State: Cancelled

4.2.5.

The source of an operation may cancel it. The specifics on operation cancellation are dependent on the
specific DPP version in concert with the application. However, in general sources cancel operations by
establishing no duration for the operation.

Operation Mutability

Not all state associated with an operation is invariant, but some is. For example, the operation identifier
uniquely identifies the operation and is invariant. However, a source can rename the operation (view this
contradiction as a cancellation followed by the establishment of a new operation). The duration, on the
other hand, changes with each retry of the operation.

The situation of operation state gets more complicated when the application protocols are involved. It is
important that protocol implementations be aware of what state can change and what state cannot change.

The purpose of this section is to define the common situations of mutable operation state, specify the
common rules, and point out that the application must identify which state can change and which state
cannot.

There are two cases when the state of an operation can change. First, when the source of the operation
changes. Some operation state relates directly to the source, and so when the source changes then the state
associated with the source must change. Second, state changes when the source retries the operation. A
retry of the operation may change any state other than invariant state.

This leads to the following classifications for operation state:

1. Invariant: This state must not change for the duration of the operation. Any attempt to change this state
will result in undefined behavior.

2. Mutable: This type of state changes over the lifetime of the operation through either a re-source or a
retry. Thisisthe default type for all state.

3. Source: Thistype of state has no meaning apart from the source of the operation, and so if the source
changes then this state must be invalidated. Source state is mutable.

For DPP, only the operation identifier is invariant. Specific DPP versions may identify additional state,
and should classify the type of state they introduce.

@ Treat all operation state as M utable unless specified otherwise. 4ot - 2008- 1-
spec- 24

Thismeansthat aretry of the operation may change all operation state not identified as Invariant.

Operation Consolidation

@ Invalidate operation state identified as Source when the operation source
changes. gof - 2008- 1- spec- 25

The DPP must notify application protocol implementations of source changes so that they may
correctly invalidate Source state.

4.2.6. Operation Consolidation

In many application protocoals, it is desirable to consolidate multiple operationsinto a single operation that
has the same effect. This can result in both bandwidth and CPU benefits. However, the nature of the DOF
Protocol Stack makes such consolidation difficult unless certain rules are followed precisely.

Each application protocol must define the specific rules for consolidating its own operations. This section
highlights the difficulties that all application protocols must avoid. If an application protocol makes no
mention of consolidation, then assume that consolidation is not possible.

K ey to understanding consolidation isthe description of DIRECTED and FL OODED operations presented
above. A not so obvious effect of FLOODED operationsis that the source node does not know, in general,
if areceiving node 'accepts the sender as the authoritative source of the operation.

For example, the following situations can arise;

1. The receiver does not accept the operation because of security issues (some security issues result in
silently dropping the operation).

2. The receiver has a 'better' source for the operation. The loop prevention logic of the presentation layer
may result in the use of a different source.

This lack of knowledge makes it difficult for a node to consolidate operations, because it does not know
(again, in general) whether it will be the source of the consolidated operation. If it turns out that the sender
is not the source, then the operation that has been 'merged' into the consolidated operation may remain
unknown to the receiver (assuming that consolidation resultsin not forwarding the operation). In turn, this
may result in the receiver’s behavior being different from if it had used the sender as the source, making
it impossible for the consolidating node to maintain the behavior of the merged operation.

In order to assure that consolidation is valid, a node must only consolidate operations that meet specific
requirements. These requirements ensure that the receivers of the consolidated operation accept to the
sender as the source of the operation (if they would accept the operation from any node).

In general, this means that consolidated operations must be compatible from a security perspective and
either:

1. Be DIRECTED operations. A node that is sending a DIRECTED operation is following the DAG of
some other operation (discussed above in the Operation Graphs section). DIRECTED operations are
always'owned' by the sender. This ensures that the receiver will treat the sender as the source. Senders
can aways consolidate operations that received from other nodes into these outbound DIRECTED
operations (based on the application requirements).

2. Be FLOODED operations that created and managed by the sender. In this case the operation is not
directed, but the sender ‘'owns' the operation. This results in the node being at the root of the DAG
associated with the operation, and so that nodeis free to consolidate other operationsinto that operation
(whether they are DIRECTED or FLOODED). However, the node must not create a new, FLOODED
operation just in order to consolidate operations — the application on the node must manage the

35

Priority of State Modifications

4.2.7.

FLOODED operation. To do otherwise may result in ringing and self-sustaining operations, assuming
more than a single node tries to consolidate a single set of operations.

3. Be operations received from the same source. Nodes may consolidate these operationsis discussed in
the specific DPP version documentation because they are already linked to one another by being from
the same source.

The first two rules actually consolidate to a single rule: nodes may consolidate operations that use the
consolidator’'s SID. This also guarantees that a single application (which uses a single SID by definition)
is always able to consolidate its own operations.

The third rule indicates that nodes may consolidate operations from the same source as defined by each
DPP version.

Priority of State Modifications

It isimportant that all implementations handle operation state changes in the same way. Typically, thisis
not an issue; however, the edge cases need clarification. These situations are difficult based on security
considerations.

Nodes apply the following sequence for all operation state changes. Note that these steps are logical, and
may be implemented in many equivalent ways. For each received operation:;

» Asanoptimization, the receiver evaluatesthe packet before validation to determine whether it will drop
the packet. Receivers do this only if the can make no modifications to system state. Receivers drop
packets for many reasons, and this optimization allows bypassing the decryption/validation processin
these cases.

» The receiver authenticates and validates the packet. Unsecured packets are assumed authenticated,
secured packets must pass authentication and permission checks. Failures at this step cause the receiver
to drop the packet as specified.

» The receiver updates the DPP state for the operation. This includes checks for retries, and any state
managed by individual DPP versions. These checks may result in the receiver dropping the packet.

» The receiver updates the operation state. This includes duration modification (including cancelling of
operations)

» Thereceiver passes the operation to the application for further processing.

@ Apply operation state changesin the defined order. gof - 2008- 1- spec- 26

Receivers handle all modifications to operation state as defined in the stack specification.

4.3. General Stack Sequence

The DOF Protocol Stack is composed of three general layers: the network layer, the presentation layer,
and the application layer. A given PDU always begins with the network layer. Once the network layer
has completed reading then the next byte begins the presentation layer. Once the presentation layer has
completed reading then the next byte begins the application layer. The application layer completes the
PDU. The layering is then reversed and associated trailers (if present) are read.

This strict layer does not mean that other control layers cannot be added to the stack. However, when
they are added they must be understood (logically) as being part of the layer above them. For example,

36

General Stack Sequence

atransport layer could be added above the network layer. In doing this, however, a particular version of
network layer would need to be created, and that layer would understand how to read the (new) transport
layer. Once the new transport layer is read then the next byte must be the presentation layer.

Further, each layer except the application layer has an (optional) associated trailer. Each layer header
defines a context for the next layer. The DOF Protocol Stack defines the standard context information for
the stack itself, and only information specified in the context should pass from one layer to the next.

= |DOF Protocol Stack gof - 2008- 1- pdu- 1

Transport Header

DNP Header

DPP Header

Application

DPP Trailer

DNP Trailer

Transport Trailer

Transport Header Variable-length, optional. Thisis defined by the transport.

DNP Header Instance of General DNP Headerqof - 2008- 1- pdu- 2-
DPP Header Instance of General DPP Header gof - 2008- 1- pdu- 7-
Appli cation Instance of General Application Headerqgof - 2008- 1- pdu- 13-
DPP Trailer Instance of General DPP Trailergof - 2008- 1- pdu- 8-
DNP Trail er Instance of General DNP Trailerqof - 2008- 1- pdu- 3-

Transport Trailer Variable-length, optional. Thisisdefined by the transport.

@ DNP version fixed for a single 2-node session. gof - 2008- 1- spec- 27

The negotiated DNP version is not alowed to change during asingle 2-node session. Any attempt
to do so must result in the session being closed.

@ DPP version fixed for a single 2-node session. gof - 2008- 1- spec- 28

The negotiated DPP version is not allowed to change during a single 2-node session. Any attempt
to do so must result in the session being closed.

37

Optimized Datagram Reading

@ DNP version query (version 0) must be supported on all lossy servers.
dof - 2008- 1- spec- 29
All servers that support lossy transports must support DNP version O for datagram version query

as described. This means that they must correctly respond to queries. They do not need to issue
queries. DNP version 0 is not allowed on lossless transports.

@ DPP version query (version 0) must be supported on all lossy servers.
dof - 2008- 1- spec- 30
All servers that support lossy transports must support DPP version O for datagram version query

as described. This means that they must correctly respond to queries. They do not need to issue
queries. DPP version O is not allowed on lossless transports.

@ APPID version query (DSP) must be supported on all lossy servers.
dof - 2008- 1- spec- 31

All nodesthat support lossy transports must support DSP for datagram version query as described.
This means that they must correctly respond to queries. They do not need to issue queries.

@ APPID must bepresent in all losslessdatagram after negotiation. gof - 2008- 1-
spec- 32

This means that each lossless datagram (excluding negotiation) must contain an DNP Header,
DPP Header, and APP PDU.

4.3.1. Optimized Datagram Reading

The following discussion applies to reading DPS datagrams on streaming sessions. Datagram transports
provide entire datagrams to the reader, and so there is usually not a question of how much data to read.
However, on streaming sessions it is typical to obtain data as it arrives without regard to the datagram
boundaries that were sent.

The issue is that issuing a read for more data than the datagram contains may cause an indefinite block
(at least until another datagram arrives), and reading too few bytes, while safe, is not optimal for many
implementations.

The ideal situation is to read the datagram in 2 read operations. The first read obtains enough of the
datagram to completely determine the remaining length, and the second read obtains the rest of the
datagram. In the worst case this may not be possible, and 3 read operations are required. This occurs when
the datagram length changes (getting larger), and not enough datais obtained in the first read to determine
the length.

In order to optimize behavior, it is useful to know the smallest datagram size possible, as it will always
be possible to read that length. Referring to the DPS.1: DOF Protocol Stack definition; there are always
at least three layers present. The DNP and DPP have a mandatory header byte, and the Application has a
header that is at |east one byte. This meansthat there are at | east three bytesin any datagram. However, in

38

MTU

4.3.2.

the case of streaming sessions there must be length information present in the DNP. This means that the
minimum datagram size is at least four bytes, with at least two bytes required after the DNP layer.

Also note that on streaming sessions that the DNP version (which determines the length) is negotiated (or
asserted) immediately, and so the particular DNP version in use will be known and will not change.

On streaming transports, the DNPvlheader has a minimum size of three bytes (version, flag, one byte
length) and atypical maximum size of five bytes (version, flag, three byte length). Additional bytes after
the length can beincluded with the rest of the PDU for thisdiscussion. The questioniswhether it isalways
safe to read the additional two bytes. Thisis guaranteed to be true because the DOF Protocol Stack must
always include an application protocol, and the required headers are at |east two bytes long.

Once the DNP version is known, then it can be asked what its own minimum header sizeis. Itis
aways safe to read that amount plus two bytes, as the DPS requires that at least two bytes follow
the DNP layer. Aslong as the size of the datagram can be determined by reading this combined
minimum length then the datagram can be read in two read requests.

MTU

Each transport that supports the DPS definesan MTU or Maximum Transmission Unit. The MTU defines
the maximum PDU length, based on the transport, and is independent of the capabilities of the protocol
itself.

Independent of the transport, the maximum MTU for any transport is 22%.1. Thisisamassive number, and
typical environments will never need to handle datagrams that large.

@ |Themaximum DPSMTU is 2%%-1. 4o - 2008- 1- spec- 33

Stack layers will never need to work with a datagram that is larger than this limit. Typical
datagrams will be much, much smaller. Imposing a limit can help in API design and data type
choice.

Note that no current DPS version defines fragmentation, so there is currently no way to send an DPS
datagram that islonger than the MTU on that transport. The solution to this problem is to use a streaming
session and stream the datagram over that connection. If streaming sessions are not supported then the
information can be fragmented at the application layer, with an interface allowing access to the different
fragments of data or a streaming transport (below DPS) can be provided.

Transports may also define a'minimum transport unit', or the minimum datagram size that can be sent. Itis
theresponsibility of the DNPto provide methods for padding the datagrams so that any minimums are met.

4.4. Sessions and Servers

The basis of all DOF communication is a datagram, which was presented and defined in the previous
section. Datagrams arrive and are sent using either servers or sessions. Servers do not maintain state,
sessions do maintain state.

Connections, which are a special form of session, not only maintain state but monitor the session and can
notify the application if the session stops operating.

In the definition of DPS context, each DOF operation indicates the session requirementsthat it has. Based
on the operation and session, different state must be maintained (both in the operation and the session).

39

Transport

4.5. Transport

The specific requirements and definitions for the transport layer are covered in an earlier section. This
section defines the context information required for PDUs sent to the transport.

The following information is required as context for transmitting a PDU:

1. SESSION: This information refers to the information associated with the datagram by the transport,
server, or session that it arrived on. It encompasses the associated transport information, as well as
the characteristics of the datagram/transport (such as streaming/datagram, lossless/lossy, etc.). These
parameters were defined earlier in the section on Transports.

2. BUFFER: The data and associated length of the DNP PDU.

4.6. DOF Network Protocol

Thereisacommon header format for all DPS Network Protocols. All DNP datagrams begin with asingle
byte header. This header defines the specific DNP version, and indicates whether flags bytes are present.

The specific format of the flag bytes and control fields (including their length and the individual meaning
of each byte) is defined by each specific DNP. In general, if the protocol is not understood then the flags
and fields are not understood.

Asdescribed above, the specific DNPin use on alossless session must be negotiated. In this case,
the negotiation must be done with no flag bytes and no control fields. Any attempt to use flags
terminates negotiation and asserts a specific version.

Thisisthe genera specification for all versions of DNP.

G—

General DNP Header qof - 2008- 1- pdu- 2

Flag Version
Flags Optional, controlled by Flag
(not present)
Optional, controlled by Flags
Headers
(not present)
Fl ag One bit. Controls the presence of the FI ags field, which is present if set.

Ver si on Seven bits. Specifiesthe DNP version.

Fl ags Variable length. Optional, controlled by FI ag. Contains options defined by the
version.

Headers Variablelength. Optional, controlled by Fl ags. Header fields required by the
Ver si on or controlled by FI ags.

40

Context

4.6.1.

4.6.2.

1l

General DNP Trailer dof - 2008- 1- pdu- 3

Trailer } Optional

Trail er Variablelength. Optional, as needed. Trailing data as defined by the Ver si on.

Each specific version of the DNP should be available for use on al transports. This only means that DNP
versions should be specified such that they can be used on many different transports (lossy and lossless, for
example). Violations of this rule should only be allowed in order to gain avery specific benefit and should
be extremely rare. This does not mean that al of the same control fields are required on al transports, but
rather that control fields that are not applicable to all transports should be controlled by flag bits.

Context

The DNP layer sits on top of the Transport layer. As discussed in the Transport section, each transport
provides sessions and servers, provides meaning for transport addresses, and deals with the different
datagram types (unicast, multicast, broadcast).

TheDNPitself isrelated to a SESSION. The SESSION includesinformation necessary to send and receive
datagrams on a particular transport. Further, based on the transport, different SESSIONS may be related.

For each received PDU the DNP requires the following context information from the Transport:

1. SESSION: This is associated with the DNP. It includes the information discussed in the Transport
section, specifically:

2. Any addressing and server required to send responses.
3. Tothe extent possible, the method used to receive the PDU (unicast, multicast, broadcast).
4. Thetype of session (streaming/datagram).

5. BUFFER: Thereceived data and associated length. In the case of streaming sessions the received data
and length may not represent an entire PDU (or may represent more than asingle PDU). In thiscase, it
is the responsibility of the DNP to continue obtaining BUFFER until afull DNP PDU has been read.

For each PDU that the DNP is asked to transmit, the context given must contain the following in addition
to the information required of the transport context:

1. SESSION: Thisincludes transport information including any target transport address if required.

2. BUFFER: The DPP PDU dataand associated length. Any transport-defined minimum datagram lengths
must be satisfied.

DOF Network Protocol Versions

There are potentially many different versions of this protocol. The specific version is always determined
by the first header byte as shown above.

o

For acurrent list of registered versions, please contact the ODP-TSC or go to https://opendof.org/
registry-dps-protocol.

41

https://opendof.org/registry-dps-protocol
https://opendof.org/registry-dps-protocol

Flags

4.6.3.

4.6.4.

4.6.5.

@ DNP versions are registered with ODP-TC before use in products.
dof - 2008- 1- spec- 34

All DNP versions must be registered with the ODP-TSC before use in products.

Thefollowing describes behavior and requirementsthat apply to al versions of the DOF Network Protocol.

@ Reserved DNP versionsthat cannot be used. gof - 2008- 1- spec- 35

The following DNP versions are reserved and are never valid. All of these versions collide with
previous DOF releases that are not currently supported: 0x20 (version 3.1 and 3.2), 0x21 (version
3.1and 3.2), 0x30 (version 3.1 and 3.2), 0x31 (version 3.1 and 3.2).

Flags

Each DNP version defines a 'default’ value for its flags. The specific default values can be found in
the documentation for the version. This default flag value must be independent of transport. After any
negotiation datagrams, if the flags are not present then the default flag value must be assumed.

@ The flag bit of DNP must be set on all streaming datagrams except during
negotiation. gof - 2008- 1- spec- 36

This alows a single byte to determine whether negotiation is complete. Assuming in-order
guaranteed delivery (the definition of stream transports) the first byte can beread. If theflag bitis
clear then the datagram consists of two bytes (negotiation). If theflag bit isset then the datagramis
not anegotiation datagram and more than asingle byte must be read to determine the actual length.

DNP Required Functionality

DNP must provide for determining the size of DPP datagrams. It must also provide for any additional
logical addressing in addition to that required by the transport.

DNP Logical Addressing

DNPIogical addressesare an extension of transport |ogical addressing. Each datagram received can contain
a specific source and destination DNP logical address. This information is encapsulated along with the
transport addressinformation to form the 'logical address for DOF communications. The permitted values
for DNP addresses include the specia value NULL and integer values from zero (0) to 2721 (4194303).

The specification of each DNP version will present the methods used to handle these requirements.

@ Default DNP address for lossless server-side session. gof - 2008- 1- spec- 37

The server side of each lossless session must initially be associated with DNP address NULL.
This allows negotiation to occur based on that target address. Each DNP version must use DNP
address NULL for all traffic that does not explicitly include a different DNP address.

The server side of each lossless session must initially be associated with DNP addressNULL. Thisallows
negotiation to occur based on that target address. Each DNP version must use DNP address NULL for all
traffic that does not explicitly include a different DNP address.

42

DNP Discovery and Loopback

DNP addresses are associated with the transport address. This meansthat if the transport address changes
for any reason that the associated DNP logical address is no longer valid. For example, a command that
is received that includes a source DNP address but requires a multicast response would need to drop the
command’'s DNP address in the response packet (because it is being sent to a different transport address).

4.7. DNP Discovery and Loopback

4.7.1.

The following sections define the versions of DNP for version discovery and loopback detection.

DOF Network Protocol - Version 0 (DNPvO)

As described above, there are problems attempting to discover all of the different versions of the different
DPSlayersthat arein usein anetwork. In order to solve this problem, all nodes are required to understand
DNP version 0 in addition to at |east one other version.

There are two PDUs defined for version 0. Thefirst isaquery, and it corresponds to a single byte header.
There can be no flag bytes. The second is a response, which is sent some time after the query, and which
correspondsto alist of DNP versions supported by the sending node. The format of thisPDU isthe header
byte followed by a number of bytes each representing a version. There must be at least one additional
version other than version 0 supported by a node, and so the PDU length (either the query consisting of
all zero (0) bytes or the response that must contain at |east one non-zero number) differentiates between
aquery and its response.

Each query is associated with a SESSION that includes a lossy server. This means, for example, that a
node supporting multiple multicast addresses must track queries (as described below) for each SESSION.

There are transports that reguire minimum datagram lengths. In order to support query on these transports,
certain trailers are defined on both the query and response.

First, the query PDU may contain as many trailing zero (0) bytes as necessary to meet datagram length
requirements. Query datagrams are then defined as datagrams consisting of all zero bytes.

Second, the response PDU may contain as many trailing zero (0) bytes as necessary to meet datagram
length requirements. Response datagrams are then defined as a zero (0) byte, followed by some number
of non-zero bytes, followed optionally by some number of zero (0) bytes. Note that thereisa problemin
determining the correct response to arequest where there are multiple servers on asingle transport address
(differentiated by DNP port). As there is no way to identify which server should respond, the (single)
response should aggregate all servers.

Responses to unicast queries are sent unicast.

Figure4.1. DNP Unicast Query

=
o

43

DOF Network Protocol - Version 0 (DNPvO0)

1. Query issent from A to B.
2. Response is sent from B to A immediately.

In the example above, node Query wants to determine the DNP versions supported by node A. It sends
aunicast DNPvO Query PDU to A. Since the PDU is unicast, node A immediately responds without any
use of timers or delay.

Responsesto multicast queries must be sent within three (3) minutes of aquery, but the exact timing should
be determined randomly and controlled by other network traffic as described below. Responsesto unicast
gueries should be sent quickly.

For multicast queries, between the time of the query and the time of the response three events can prevent
sending aversion in the query response (that consists of a set of versions):

1. The node with a pending response sends a multicast PDU using the version on the same SESSION as
the query.

2. A multicast PDU is received by the node with a pending response using the version on the same
SESSION asthe query.

3. A multicast query response is received from another node with aversion listed on the same SESSION
asthe query.

The goal of thislogicisto only send information that cannot be determined by watching network traffic.
The specific goal of version detection is not to discover nodes on the network, but rather to just discover
versions of protocolsthat arein use.

Figure4.2. DNP Multicast Query

=
[es}

C

Query E
(1

Start Start
Timer Timer
|
S Timer
<-- - Expires

Response
©

Cancel
]

< — — —

1. Query issent from A to all nodes (multicast).
e B and C both start randomized timers.

» Timer on node C expires.

DOF Network Protocol - Version 0 (DNPvO0)

2. Responseis sent from C to all nodes (multicast).
» Node A receives response.
» Node B cancelstimer, preventing response.

In the example above, a node Query initiates version discovery by multicasting an DNPvO Query PDU.
ThisPDU isheard by nodes A and B. Both of these nodes pick random times within the next three minutes
and start timers for when they will respond. The timer on B expires, and so B sends a multicast DNPvO
Query Response. This PDU contains the same version as A, and so in node A cancels its timer without
sending aresponse.

If each version in the pending query response is covered by one of these cases then the query responseis
not sent. Otherwise at least the versions that have not been seen are sent.

For example, assume that anode N speaksversion A and B of DNP. It receives amulticast PDU that isan
DNP version 0 query. It determines (randomly) that it will send its response in 2 minutes. The response
will be aPDU consisting of a zero byte (header), followed by A and B.

After some time and before the two minutes pass a PDU is multicast from node N using DNP version A.
Sometime later, but still before the two minutes pass, a multicast PDU is received by node N using DNP
version B. In this case, the pending response PDU is cancelled.

Assume however that the second PDU is not received. The 2 minutes pass. In this case a response
containing at least B is sent.

This protocol exists only to accomplish version discovery on a network. In particular, it cannot be used
to encapsulate any other stack layers.

4.7.1.1. Query

Request all DNP versions on a network.
Session: None
Addressing: Unicast, Multicast, Unicast

DNPVO Query gof - 2008- 1- pdu- 4

1l

Instance of General DNP Headerqof - 2008- 1- pdu- 2

. Flag =0
Flag Version } Version = 0x00 (0)
Padding } Padding = 0x00 ...
Fl ag One bit.

Ver si on Seven bits.

Paddi ng Optional, variable length. The padding consists of as many zero bytes as are
necessary to meet minimum transport size requirements.

45

DOF Network Protocol - Version 127 (DNPv127)

4.7.2.

1l

DNPVO Query gof - 2008- 1- pdu-5

Instance of General DNP Headerqof - 2008- 1- pdu- 2

. Flag =0
Flag Version } Version = 0x00 (0)
Versions
Padding } Padding = 0x00 ...
Fl ag One bit.

Ver si on Seven bits.

Ver si ons Variablelength. Thislist contains only non-zero bytes. Each byte must beavalid
version, meaning that the most significant bit must be zero (0). At least one version
must be present.

Paddi ng Optional, variable length. The padding consists of as many zero bytes as are
necessary to meet minimum transport size requirements.

@ DNPvO Version List must be sorted in increasing order. gof - 2008- 1- spec- 38
Sorting the list makes it easier to remove matching responses and find matching versions.
This version can only be used as described above in discovery on lossy transports.

In order to optimize traffic, responses to multicast queries are sent using multicast, not unicast.

DOF Network Protocol - Version 127 (DNPv127)

Thissection describesversion one-hundred twenty seven (127) of the DOF Network Protocol. The protocol
begins with a general one-byte header as described above. This byte contains the version (127).

@ DNPv127 must not include flags. gof - 2008- 1- spec- 39
There are no flags for this DNP version, and so the high bit must be clear.
Thisversion is somewhat special in that it is never really 'supported' by the DPS. It is defined, but its use

is reserved for the DPS transports, and not the DPS itself. Because of this, version 127 is not advertised
using DNPVvO.

@ DNPv127 must not be advertised. gof - 2008- 1- spec- 40

This version is for loopback detection only. It is not "supported” in the sense of encapsulating
other layers, and so it is not advertised.

46

DOF Network Protocol - Version 127 (DNPv127)

4.7.2.1. Check Loop

Send random data on the network that can be used to detect |oopback.
Session: None
Addressing: Unicast, Multicast, Unicast

DNPv127 Header qof - 2008- 1- pdu- 6

1l

Instance of General DNP Headergof - 2008- 1- pdu- 2

7 6 5 4 3 2 1 0

Flag =0

F1 i

ag Version } Version = Ox7F (127)
Random
Padding

Fl ag Onebit.

Ver sion Seven bits.
Random Four bytes. The sender must include these four bytes of random data.

Paddi ng Optional, variable length. The sender may include additional random data,
including any necessary to meet minimum transport size.

@ DNPv127 must only be used on lossy transports. gof - 2008- 1- spec- 41

This DNP version must only be used on lossy transports, use on lossless transports should result
in the session being closed or terminated.

This protocol version exists to aid transports in determining transport-level 'loopback’. Loopback is
possible on some transports (based on both the transport and the addressing), and means that a datagram
sent on the transport 'loops back' and is received by the sending node.

The DPS requires that the transport remove these ‘echoed' datagrams, but it is not always possible for a
transport to know when loopback will occur. In this case the transport can use this protocol version. To
do this the transport determines a random payload and uses this protocol version to send the datagram. It
then determinesif this datagram (with matching random data) is received. If it is, then the sending address
isflagged as 'ignored'.

Note that because this protocol version is not encrypted that there is a possible denial-of-service attack
against a node. The attacker would listen for the use of this protocol version and then forge a datagram
from some other node to the listening (sending) node. Thiswould trick the nodeinto ignoring an otherwise
valid sender.

Thedanger of thisattack isminimal. A nodewith the ability to carry out such an attack (to forge datagrams)
would be able to easily interfere with communication in other ways.

The payload of this datagram is not specified apart from being random and at least four bytes long.
Receivers must ignore the datagram (except, of course, for determining the presence of loopback). The

47

DOF Presentation Protocol

datagram must not exceed the transport MTU, and must satisfy any minimum datagram size associated
with the transport. It can accomplish the latter requirement by adding more random data to the datagram.

4.8. DOF Presentation Protocol

There is a common header format for all DPS Presentation Protocols. All DPPs begin with a single byte
header. This header defines the specific DPP version, and aso indicates whether or not flag bytes and
control fields are present.

The specific format of the flag bytes (including their length and the individual meaning of each byte) is
defined by each specific DPP. In general, if you do not know the protocol then you cannot understand
the flags.

6 As described above, the specific DPP version in use on alossless session must be negotiated. In
this case, the negotiation must be done with no flag bytes and no control fields. Any attempt to
use flags terminates negotiation and asserts a specific version.

Thisisthe general specification for all versions of DPP.

— |General DPP Header ot - 2008- 1- pdu- 7

7 6 5 4 3 2 1 0
Flag Version
Flags Optional, controlled by Flag
(not present)
Optional, controlled by Flags
Headers

(not present)

Fl ag One bit. Controls the presence of the FI ags field, which is present if set.

Ver si on Seven bits. Specifiesthe DPP version.

Fl ags Variable length. Optional, controlled by FI ag. Contains options defined by the
version.

Headers Variablelength. Optional, controlled by Fl ags. Header fields required by the
Ver si on or controlled by FI ags.

General DPP Trailer dof - 2008- 1- pdu- 8

ik

Trailer } Optional

Trail er Variablelength. Optional, as needed. Trailing data as defined by the Ver si on.

In general, gateway nodes should understand all DPPs. Device nodes may understand a single DPP. This
may limit communication between device nodes except in the presence of a gateway.

48

Context

4.8.1.

Each specific DPP should be available for use on all transports. Violations of this rule should only be
allowed in order to gain a very specific benefit and should be extremely rare. This does not mean that all
of the same flags and control fields are required on all transports, but rather that control fields that are not
applicable to al transports should be controlled by flag bits.

Context

The DPP layer sits on top of the DNP layer.

For each received PDU the DPP requires the following context information from the DNP, in addition to
the context provided by the Transport:

SADDR The DNP address associated with the sender (the DNP can add a layer
of logical address to the transport). This address may be used with a
different server (with a multicast or broadcast address type) to send a
datagram to the sending node.

BUFFER The received data and associated (DPP) length. For each PDU that the
DPPisasked to transmit, the context given must contain thefollowingin
addition to the information required of the DNP and transport context:

COMMAND/RESPONSE Whether the PDU represents a command or a response.

ENCRYPT, Determined by the security requirements of the PDU.
AUTHENTICATE

BUFFER The DPP PDU data and associated length.
In addition, for each COMMAND the following must be specified:

DIRECTED/FLOODED Whether the PDU is directed or will potentially loop back to the
sender. FLOODED requiresthat OPID and anon-zero DURATION
be specified.

SINGLERESPONSE/ Indicatesthat asingle response will complete the operation and can

MULTIRESPONSE remove the associated DPP state, or for MULTIRESPONSE that

multiple responses may be received. Note that since DPP has no
application knowledge, it isimportant that the application correctly
set this indicator. DPP will remove the state on the command
(precluding further responses) if SINGLERESPONSE is set, even
if the application allows multiple responses.

OPID/NOOPID If present, represents the Operation Identifier associated with
the PDU. For NOOPID, specifies that no operation identifier is
required (although operation identifiers may always be present).

RETRY Indicates that the command is a retry. This requires that OPID be
specified.
DURATION Indicates the duration of the operation. Each DPP may have

different limits on the durations alowed, and so the DPP should
return the actual duration that will be understood by receivers of
the datagram.

Finally, for each RESPONSE the following must be specified:

FINAL/INTERMEDIATE Whether the response is FINAL or INTERMEDIATE. INTERMEDIATE
responses do not complete an operation, even if SINGLERESPONSE is

49

DOF Presentation Protocol Versions

4.8.2.

4.8.3.

4.8.4.

specified on the command. This only has effect on SINGLERESPONSE
commands, and isignored for MULTIRESPONSE.

DOF Presentation Protocol Versions

There are potentially many different versions of this protocol. The specific version is always determined
by the first header byte as shown above.

o

For acurrent list of registered versions, please contact the ODP-TSC or go to https.//opendof.org/
registry-dps-protocol.

@ DPP versions are registered with ODP-TSC before use in products.
dof - 2008- 1- spec-42

All DPP versions must be registered with the ODP-TSC before use in products.

Flags

Each DPP version defines a 'default' value for its flags. The specific default values can be found in the
documentation for the version. During the negotiation phase no flags are sent, and the meaning of the
default flag value is also ignored. After negotiation, if the flag byte is not present then the default value
must be assumed.

Encryption and Message Authentication

One of the major purposes of DPP isto protect data through encryption and message authentication. Note
that DPP does not provide authentication or key distribution, which are provided by specific application
protocols. It isthe job, however, of DPP to actually encrypt and decrypt the datagram.

Each DPP version defines how it provides security, although specific security modes of operation are
leveraged. DPPislimited in thisroleto theinformation provided to it in the context of the datagram, either
from layers above (like encryption keys), information that it transmits (fields) and information from the
network protocol.

DPP istold that a particular datagram must be secure, and whether encryption or message authentication
is required. It also allows the application protocols to determine whether a particular received datagram
was secure, and how (authenticated, encrypted). The specifics of how this information is passed on the
wire are dependent on the DPP version, and the method by which an application protocol obtains the
information is dependent on the DPP implementation. DPP will likely leverage other protocols (security
modes of operation) to actually encrypt and authenticate the information, and pass the security-related
information on the wire.

However, all secure datagrams (whether authenticated or encrypted) must ensure that no DPP or
Application datais modified on the wire.

@ Secur e datagrams (authenticated or encrypted) must be rejected if DPP or
Application data is modified in transit. gof - 2008- 1- spec- 43

This requirement begins with the DPP header (including the version and flag bit) and extends to
the end of the DPP trailer. This requirement does not require encryption of thisinformation, only
validation. How this is accomplished depends on the Security Mode.

50

https://opendof.org/registry-dps-protocol
https://opendof.org/registry-dps-protocol

Common DPP Capabilities

Each security mode of operation must define the security fields that are required for each PDU. In order
to abstract the security headers that are dependent on different security modes of operation, the following
placeholders are defined.

Encryption always begins either in or immediately after the DPP.9: Security Mode of Operation Header
Fields. This ensures that al application data is encrypted if required. Encryption always ends at the
beginning of DPP.11: Security Mode of Operation Trailer Fields. Finally, the DPP.11: Security Mode of
Operation Trailer Fields are always at the end of DPP.10: General DPP Trailer.

This definition means that the process of encrypting and decrypting datagrams can be entirely defined by
the following information:

1. The DPP BUFFER (beginning with the DPP header byte, to the last DPP trailer byte).

2. The offset in the BUFFER of DPP.9: Security Mode of Operation Header Fields.

@ Security Mode of Operation Header and Trailers are placed correctly,
defining encryption boundaries. gof - 2008- 1- spec- 44

This specification allows the mode of operation to easily determine header and trailer placement,
and to encrypt and decrypt datagrams as necessary.

= Security Mode of Operation Header qof - 2008- 1- pdu- 9
Fields
Fi el ds Variable. The format of the data is controlle dby the mode of operation, which is
always known in the context.
= Security Mode of Operation Trailer gof - 2008- 1- pdu- 10
Fields
Fi el ds Variable. The format of the data is controlle dby the mode of operation, which is
always known in the context.

4.8.5. Common DPP Capabilities

Each version of DPP (exception version 0) must provide the common functionality described in this
section. Application protocols may rely on the availability of this information independent of the actual
DPP version being used. Version 0 has no common behaviors and no context.

Most of the required functionality deals with managing operations and operation lifecycle, discussed
above.

51

Common DPP Capabilities

Rather than encapsulate different PDUs in the DPP header space, the application identifier OX7FFF is
reserved for DPP. This does not mean that the implementation needs to be identical for each DPP version,
only that the application layer can be leveraged by DPP. Thisincludes the ability to use security.

@ DPP Common Behaviors must be accepted as soon as DPP is negotiated.
dof - 2008- 1- spec- 45

This ensures that the common behaviors are available as soon as DPPis.

The following behaviors are required. Specific DPP versions may define additional capabilities, and they
would be described in the specific version specification document.

It isimportant to note that the specifications and behaviors of these behaviors are defined herein acommon
way. Theindividua versions of DPP only have control over the specific formatting of the commands and
responses that they provide.

4.8.5.1. Command/Response

DPP must allow each PDU to be classified as a command or aresponse. Thisis a magjor categorization,
and application protocols must specify whether a PDU is classified as a command or a response.
The command/response classification is independent of whether the PDU uses command identification
(operation identifiers).

4.8.5.2. Command ldentification and Lifecycle

DPP must allow commands to be uniquely identified, and must alow the relationship of command
and response to be maintained if they are identified. The method for command/response identification
is standardized and al DPP versions must support the same format. DPP must alow for unidentified
commands, although unidentified commands have no DPP lifecycle. They may have application-defined

lifecycle.

DPP must allow the lifecycle of an identified operation to be tracked. This includes the stages described
abovein the Lifecycle section. Note that lifecycle tracking requires command identification. Unidentified
operations have no lifecycle and immediately enter the DPP Cancelled state. Any lifecycle information
present in a PDU must be ignored and should be cleared for PDUs that do not include identification.
However, the information must be available to the application.

In particular, each DPP version must allow for operations that are complete on response. Thisis a specia
case of an identified command that useslifecycle, but is automatically completed when afinal responseis
processed. DPP responses must allow for both intermediate and final responses. An intermediate response
does not complete an operation (even if marked complete on response). A final response will complete
an operation that is complete on response.

4.8.5.3. SID Security

DPP versions that support security must define and negotiate the permissions necessary for using a given
SID on the wire, including the behaviors of IAM and ACTAS.

4.8.5.4. Loop Prevention

DPP must handle the case of flooded operations. Flooded operations may 'loop’, and this can cause
ringing to occur if not managed. It is DPP that defines how to prevent loops. There is overhead for this
determination, and so it is enabled by specifying FLOODED in the context.

It should be possible for areceiver to determine whether an operation is DIRECTED or FLOODED.

52

Common DPP Capabilities

4.8.5.5. Source Tracking

It isthe responsibility of DPP to manage the source of each identified operation. Throughout the network,
tracking an operation alongitssourceswill lead directly (with no looping) to the originator of the operation.

Another view of operating sourcesisthat the source 'pointers form atree for each operation, with the root
being the originator of the operation.

The transport SESSION and DPP SADDR are used to define the source.

4.8.5.6. Operation Management

Operation management is closely related to operation lifecycle. This section covers the common DPP
capabilities that are related to operation management.

When a program startsit must determinethe SID to use. The determination of the SID is discussed earlier.
It is possible that a node will know (when it starts) that it was previously using a different SID. In this
case, it is appropriate to cancel all operations associated with the prior SID. For example, a program may
use a persistent number (like a sequence number) to make its SID unique. When it starts up it can read the
last sequence (corresponding to thelast SID), cancel it, determine the new SID, and store it. The ability to
cancel all operations that use a given SID isacommon DPP capability (Cancel All).

When a node shuts down both the transport address and the SID become invalid. When a node leaves a
transport then the transport address becomes invalid. Both of these cases impact the operations that have
been created or forwarded by the node. In this case the common capabilities of Cancel All and Node
Down can be used. These commands are always used by the source node, and they do not flood and are
not forwarded. The effects of these operations do have effects that are propagated, although not using the
same commands.

Nodes that receive the Cancel All command must immediately cancel any operations where the SID of
the operation matchesthe SID passed in the Cancel All command. These cancels must be handled through
the application protocol, which may cause additional cascading cancels (using different commands) on
the network. Note that this rule applies to all operations that use the SID, independent of the transport
addresses.

Nodes that receive the Node Down command do the same as Cancel All, and in addition cause all
operations that share the source transport address to enter the Operation:L ost state.

Whenever a SID becomes invalid using either of these methods, it should not be used again for some
time so that the all operations throughout the network can be cancelled. This prevents a type of operation
identifier aliasing which can occur if aSID isreused quickly.

The management of SIDs is a complex topic. In general, nodes will either pick a completely
random SID (which can be large on the network), or will base the SID on some physical property
that the node possesses (like a MAC address). However, when multiple programs run on the
same node then they must synchronize their SID usage so that no SID collisions occur. This can
be handled by using an incrementing number in association with the SID based on a physical
property. If the SID is known to be unique then there are no chances for SID collisions.

@ Nodes should wait at least 16 secondsafter a Cancel All or Node Down before
reusing a SID. gof - 2008- 1- spec- 46
Nodes that send the Node Down or Cancel All command should not use the referenced SID for

at least sixteen (16) seconds. This requirement prevents race conditions that can cause operation
diasing. If anew operation iscreated it may match apreviously used operation identifier that isin

53

Common DPP Capabilities

the process of being cancelled. The delay ensures that the system is stable before new operations
are created. Thisdoes not apply if anew unique SID ischosen and used, asaliasing is not possible
with anew, unique SID.

@ Use and respond to the Node Down and Cancel All commands. 4ot - 2008- 1-
spec- 47

Nodes should listen for and process the Node Down and Cancel All commands. Nodes should
also send the Node Down command before leaving a transport (shutting down), and should also
send it (and delay as discussed above) if there is a chance that there are orphaned operationsin
the network. Thiswould be atypical situation if a node rebooted quickly, for example.

During the lifespan of an operation, it is possible for nodes to lose communication capabilities with the
source of an operation. Note that in atypical case anode will explicitly cancel operations beforeit leaves
anetwork, and so the source lost behavior is not typical. Also note that operation timeout is distinct from
loosing communication with the source. Loss of communication is determined by the implementation,
usually through some defined connection logic.

When communication with the sourceislost it is not appropriate for the node to assume that the operation
is cancelled, because there may be alternate paths to the original source that can continue to maintain the
operation state. In general, the DOF specification does not require that these alternate sources be tracked,
and this means that when a sourceislost that a search for anew source should take place. All nodes should
make use of the Source Lost command, although non-routing nodes are not required to unless they track
operation sources. Nodes that forward operations to other nodes (routing nodes) must use Source Lost as

appropriate.

The goal of this search is either that the operation is cancelled because no suitable source can be found, or
the operation is re-established with a new source (or maybe the same, but newly validated source). This
search isdone using aflood technique, but with different logic than normal operation flooding. The reason
for this modified flooding to avoid the overhead of creating operations along with the fact that loops can
be prevented through the state of the existing operations.

Note that there are two different types of operations: local and global. Local operations are likely
understood by a single other node, while global operations are likely to be known by many nodes. In the
case of searching for asource, the desireis not to do an exhaustive search of all nodesin the network, only
those that are reachable by the node that 1ost the source and could become the source.

For example, it makes no sense to query the entire network about an operation that is known only to a
single other node (the source of alocal operation).

There are two commands involved in the search: Source Lost and Source Found.

The process begins with a node realizing that the source of an existing operation has been lost. This can
occur because either the communication between the node and the source fails (requiring that a session
exists) or because the source of the operation sends a Source Lost command. A node with alost source
(for either of these two reasons) does two things:

* Sets the state of the operation to Lost and shortens its current timeout to 16 seconds if it is currently
greater. Operations in this state will accept any compatible source as the new source for the operation
(independent of the current operation state).

« If the operation was global, forwards a Source Lost request to all compatible sessions, including the
operation identifier. A compatible session is one that would be acceptable as a hew source, without
fundamental changes to the operation. This usually means that the security information is the same.

Common DPP Capabilities

« If the operation was local, forwards a Source Lost request on any session that could reach the SID of
the lost operation in asingle hop. If thisisnot known, then it may use the same sessions as in the global
case, setting the Sequence of the Source L ost command to 255, limiting the propagation to asingle hop.

When a node receives a Source Lost request from another node that is not its source for the operation it:
» Checksto seeif the operation is known. If it is not, the request isignored and not forwarded.
» Checksif theoperationisflagged as'Proxy Lost' already. If itis, therequest isignored and not forwarded.

» Otherwisg, it validates the operation. If the node is positive that the operation still exists then it follows
the process for Source Found. Thiswould normally only betrue if the nodeitself sourced the operation.

» Otherwise, it flagsthe operation as'Proxy Lost' and forwards a Source L ost to the source of the operation.
The 'Proxy Lost' flag is in effect for 16 seconds and cleared through the process of Source Found.
Operations with this flag set ignore Source Found commands except when sent from their source.

If the source remains lost, meaning that no suitable source can be identified in the Lost state, then the
operation will timeout after a maximum of 16 seconds. If, on the other hand, a suitable source is found
then it will begin the Source Found process.

The Source Found command begins the process of undoing the effects of Source Lost. Note that it is not
possiblefor intermediate nodesto use an application-layer retry of the operation to 're-source’, although the
original sender may use aretry in place of Source Found. Note that Source Found is sent to all compatible
sessions, but it is not a 'flooded' operation as it does not follow the DPP rules for flooded operations.

In the case of Source Found, the receiving nodes follow substantially the same rules as for aretry of the
specified operation, modifying their state similar to if they had received aretry.

The receiving node:
» Checksto seeif the operation is known. If it is not, the request isignored and not forwarded.

» Checksto see if the operation is in the 'Source Lost' state or has the 'Proxy Lost' flag set. If not, then
the request isignored and not forwarded.

« If the operation isin the 'Source Lost' state, the sender is accepted as the source and other DPP state is
updated. In this case the application istold of the new source. This has the effect of clearing the 'Source
Lost' state. The operation is then forwarded to all compatible sessions.

« If the operation has the 'Proxy Lost' flag and the sender is not the source of the operation then the
operation isignored and not forwarded. Otherwise, the sender is the source and the 'Proxy Lost' flag is
cleared and the operation forwarded to all compatible sessions.

Note that receiving aretry of an operation has the same effect as a Source Found, although in the case of
aretry the application is provided more information about the operation (the application data is missing
in the Source Found caseg).

@ Use and respond to the source lost and sour ce found requests. gof - 2008- 1-
spec-48

Nodes must listen for and process the Source L ost request. Nodes must also send and process the
Source Found command as discussed.

55

Common DPP Capabilities

©

Because of the complex behavior of Source Lost and Source Found a detailed example is now provided.
We will assume the following set of sessions. Keep in mind that whether these sessions are connections,
groups or connectionless isn't important — only the fact that they are compatible. We are going to focus

Use operation retry for all operations that include source state. gof - 2008- 1-

spec-49

Source Found may only be used for operations that do not contain Source State. Operations that

include Source State must use an operation retry in response to Source Lost.

on asingle operation which is started at node A.

Figure 4.3. DPP Source Lost and Found Example Networ k

Thisnetwork has 6 nodes and 7 sessions. We will assume that the global operation begins at node A with a
delay of 600 seconds. We can draw the current state of this network as follows (this information is shown

inasingle table, but is actually distributed through the network):

Node Source Original Source? |Normal (S), Proxy |Remaining
Lost (PL), Lost
(L)

A - Y N 600

B A N N 600

C B N N 600

D B N N 600

E F N N 600

F A N N 600

This table represents the stable state after the operation has propagated throughout the network.

56

Common DPP Capabilities

Now wewill simulate the effect of the B to D session going down without notice (meaning without aNode
Down PDU) after 30 seconds. In this case node D seesthat the parent (B) of the operation is not available.
Thiswill initiate the Source Lost handling. The Source Lost PDU will contain the operation identifier, and
will flood through the network. Note that because the network is fully connected that all nodes will either
enter the 'Lost' state or be flagged as Proxy Lost based on whether the sender is their source (except A).
The state of the system after the flooding of the Source Lost would be:

Node Source Original Source? |Normal (S), Proxy |Remaining
Lost (PL), Lost
(L)

A - Y N 570

B A N PL 570

C B N PL 570

D ? N L 16

E F N PL 570

F A N PL 570

Node A will potentialy receive two Node Lost PDUs: one from F and another from B. Each will trigger
a Source Found process. This Source Found will reset the state of the table as shown:

Node Source Original Source? |Normal (S), Proxy |Remaining
Lost (PL), Lost
(L)

A - Y N 570

B A N N 570

C B N N 570

D E N N 570

E F N N 570

F A N N 570

Note that the parent of node D has changed. Depending on the specifics of the protocol version other
parents may change as well.

Now we are going to simulate the effect of the A to B session and the E to F session going down at the
same time. The Source Lost will propagate, athough this time the network is no longer fully connected
and so the scope is different. The result looks like this:

Node Source Original Source? |Normal (S), Proxy |[Remaining
Lost (PL), Lost
(L)

A - Y N 570

B ? N L 16

C ? N L 16

D ? N L 16

E ? N L 16

F A N N 570

Since no authoritative source was found, no Source Found PDUs were created. In this case the operation
will time out after the 16 second delay on nodes B, C, D, and E.

57

Common DPP Capabilities

The following sequence diagram shows the resulting datagrams on the wire in both the first and second

examples:

Figure4.4. DPP Lost and Found Example 1

=
los}
(@)

D

e
|

Lost
Liost ?ost

Lost

Lost

Lost

Found

e Found

Found

Found

Found
Qound

1. D determines that the connection with B islost and initiates Source Lost.

2. A receives Source Lost and as the original parent begins Source Found.

3. D receives Source Found from E, who becomes the new parent.

Thisexampleis a hypothetical example of the sequence of PDUs. As shown thereisno Lost from Fto A.
Thisis because the Found in step 7 arrived before it would have sent the Lost.

Figure 4.5. DPP Lost and Found Example 2

A B

(@]

|w
e
e

-+

oE Lost ng

—
o
-+
=
o
2

1. B enters Source Lost and notifies C and D.

» Not shown that C and D will send Source Lost to E.

2. E enters Source Lost and notifies C and D.

Note that in this example node A and F receive no messages because their onsto the other nodes were
broken. Thelossis localized to the isolated section of the network.

58

Common DPP Capabilities

Certain nodes will consolidate operations and only forward a single representative operation instead of
multiple operations. This determination cannot be made by the DPP itself because it requires application
knowledge. However, since operation consolidation involves the DPP it must be able to support it.

This kind of behavior creates a relationship (which must be managed by the application) between two or
more input operations and a single output operation.

Anissuethat arisesin this caseis how to handle a cancellation or timeout of a single 'input' operation that
uses the operation identifier that was forwarded and represents the consolidated operation. This problem
is solved with the Operation Rename request.

@ Correctly handle and forward Operation Rename request from the
operation parent. gof - 2008- 1- spec- 50

When Operation Rename is received from the parent of an operation then it must be handled and
forwarded as appropriate.

The aternate solution would be to use a cancel and then begin a new operation; however this
solution causes more traffic and may cause instability if used frequently. The single Operation Rename
accomplishes both tasks in a single request. When a node receives this operation it verifies that the
referenced operation identifier (in the payload) exists on the node and that the request is coming from the
parent and on a compatible session. If it does not then the request is silently discarded. If the operation
does exigt, then:

» The DPP state associated with the referenced operation is replaced with the state of the Operation
Rename.

» The application associated with the operation is notified of the rename.
» The PDU isforwarded. The application should guide thisforwarding, but if not then it must be flooded.

The following example shows how this operation could be used. Consider five nodes, A, B, C, D, and E.

Figure 4.6. DPP Operation Rename Example Networ k

59

Common DPP Capabilities

There are sessions established as shown in the diagram. Node A initially creates an operation OP; on D,
which D then forwardsto E. At some later time node B establishes OP, on D. The application knows that
the effects of OP1 and OP2 are the same, and so this second operation is not forwarded to node E. The
same occurs later between node C regarding OPs.

At this point each of the nodes A, B, C, and E has a single operation (although not all the same). Node D
is aware of all three operations. Assume that OP;3 is cancelled. In this case node D needs to handle this,
but node E is not concerned with OPs.

Now consider the case where OP; is cancelled (or otherwise terminates). The effects of the operation need
to remain in order to satisfy OP,. Forwarding OP, to node E is an option, but that may have other side
effects that are not desired. In this case node D can use Operation Rename on OP;, renaming it to OP.
The sequence looks like this:

Figure 4.7. DPP Rename Example

>

B C

|w
e

e [Create OP
Dreate O Py

e Createl OP,

e Dreate O Py
ancel O Py

e ancel OPy

Rename OP; tq QP

1. A creates OP; and forwardsto D, which forwardsit to E.
* Note that the operation creation between A, B, C and D are not shown for simplicity.
2. B creates OP, and forwards to D, which does nothing as the operation has the same effect as OP;.
3. C creates and then cancels OP3, for which D does nothing.
4. A cancels OP;. D then renames OP; to OP; to preserve the effect on node E.

Notethat the Renamein step 7 isvery similar to acancel to that node. Assuming that node E had forwarded
OP; to other nodes, it must propagate the Rename in order to complete the re-association.

4.8.5.7. Ping and Ping Response

There are situations in which a node desires to know that another node is still operating. This is
accomplished with a Ping command and a Ping response.

60

DPP Discovery

@ Respond correctly and within 10 seconds to Ping PDUS. gof - 2008- 1- spec- 51

When atransport unicast Ping is received a response must be sent. Multicast and broadcast pings
should be silently ignored unlessit is equivalent to transport unicast as determined by the security
mode of operation. A response (meaning any traffic) should be received within ten (10) seconds
of the ping. Secure pings must result in secure responses.

The Ping command requests that the receiver send traffic to the sender. It is permissible for the node to
send any directed (not multicast/broadcast) traffic, not just a Ping response. However, if there is no other
traffic to send then the Ping response can be sent.

Multicast and broadcast commands should be ignored. However, it is difficult on some transports to
determine with precision whether a command is received multicast or broadcast. In these cases it is
allowable to send a response.

4.8.5.8. Heartbeat

A heartbeat command has no response. It is useful when a transport requires that a PDU be sent, but no
behavior is desired or required. All DPP fields are ignored for the heartbeat.

4.8.5.9. Keep Alive

There can be issues on some streaming transports like TCP/I P with determining when a session is broken.
Thisistypically aproblem wherethe connectivity islost inside the network (for example, between routers).
If there is no traffic on the session then the fact that the session no longer exists may not be known to the
application for along time.

If the stack cares about this case, it can be desirable to pass information over the session. The ping or
heartbeat PDUs described above may be used in this case. The application may choose whether aresponse
isdesired (Ping) or whether just sending a datagram will do (Heartbeat).

Whether aparticular implementation includesthe use of 'keep-alive' datagramsisup to theimplementation.
They are not required in order for the protocol stack to function.

4.9. DPP Discovery

4.9.1.

The following DPP protocol versions are used for DPP discovery.

DOF Presentation Protocol - Version 0 (DPPvO0)

Asdescribed earlier, there are problems attempting to discover all of the different versions of the different
DPSlayersthat arein usein anetwork. In order to solve this problem, all nodes are required to understand
version 0 in addition to at least one other version.

The use of DPPvO isdescribed here. It may only be used with anon-zero version for DNP. In other words,
once a particular DNP version is known then DPP versions can be queried.

There are two PDUs defined for version 0. Thefirst isaquery, and it corresponds to a single byte header.
There can be no flags. The second is a response, which is sent some time after the query, and which
correspondsto alist of DPP versions supported by the sending node. The format of this PDU isthe header
byte followed by a number of bytes each representing a version. There must be at least one additional
version other than version O supported by a node, and so the PDU length (either the one-byte query or the
multi-byte response) differentiates between a query and its response.

61

DOF Presentation Protocol - Version 0 (DPPv0)

Responsesto multicast queries must be sent within three (3) minutes of aquery, but the exact timing should
be determined randomly and controlled by other network traffic as described below. Responses to unicast
queries should be sent quickly.

Responses to unicast queries are sent unicast.

Figure 4.8. DPP Unicast Query

=
o

1. Query issent from A to B.
2. Responseis sent from B to A immediately.

In the example above, node 2 wantsto determine the DPP versions supported by node R2. It sends aunicast
DPPv0 Query PDU to R2. Since the PDU is unicast, node R2 immediately responds without any use of
timers or delay.

For multicast queries, between the time of the query and the time of the response there are three events
that can prevent sending aversion in the query response (that consists of a set of versions):

» The node with a pending response sends a multicast PDU using the version on the same SESSION as
the query.

e A multicast PDU is received by the node with a pending response using the version on the same
SESSION as the query.

» A multicast query response is received from another node with a version listed on the same SESSION
asthe query.

The goal of thislogicisto only send information that cannot be determined by watching network traffic.
The specific goal of version detection is not to discover nodes on the network, but rather to just discover
versions of protocolsthat arein use.

62

DOF Presentation Protocol - Version 0 (DPPv0)

Figure 4.9. DPP Multicast Query

>
los
(@}

Quiery E
(1

Start Start
Timer Timer
|
- Timer
<-- - Expires

Response
©

Cancel
]

Bl

kK — — —

1. Query issent from A to all nodes (multicast).

» B and C both start randomized timers.

» Timer on node C expires.
2. Responseis sent from C to all nodes (multicast).

» Node A receives response.

* Node B cancelstimer, preventing response.
In the example above, a node Q initiates version discovery by multicasting an DPPvO Query PDU. This
PDU is heard by nodes R2 and R3. Both of these nodes pick random times within the next three minutes
and start timers for when they will respond. The timer on R3 expires, and so R3 sends a multicast DPPvO
Query Response. This PDU contains the same version as R2, and so node R2 cancels its timer without

sending aresponse.

If each version in the pending query response is covered by one of these cases then the query responseis
not sent. Otherwise at least the versions that have not been seen are sent.

For example, assumethat anode N speaksversion A and B of DPP. It receivesaPDU that isan DPPversion
0 query. It determines (randomly) that it will send its response in 2 minutes. The response will be a PDU
consisting of azero byte (header), followed by A and B (along with whatever DNP bytes are required).

After some time and before the two minutes pass a PDU is multicast from node N using DPP version A.
Sometime later, but still before the two minutes pass, a multicast PDU is received by node N using DPP
version B. In this case, the pending response PDU is cancelled.

Assume however that the second PDU is not received. The 2 minutes pass. In this case a response
containing at least B is sent.

This protocol exists only to accomplish version discovery on a network. In particular, it cannot be used
to encapsulate any other stack layers.

63

DOF Presentation Protocol - Version 0 (DPPv0)

4.9.1.1. Query

Request all DPP versions on a network.
Session: None
Addressing: Unicast, Multicast, Unicast

= |DPPVOQuery gof - 2008- 1- pdu- 11
Instance of General DPP Headergof - 2008- 1- pdu- 7
7 6 5 4 3 2 1 0
] Flag =0

Flag Version } Version = 0x00 (0)

Fl ag One bit.

Ver si on Seven bits.
= |DPPV0 Query Response qof - 2008- 1- pdu- 12

Instance of General DPP Headerqof - 2008- 1- pdu- 7

. Flag =0
Flag Version } Version = 0x00 (0)
Versions
Fl ag One bit.

Ver si on Seven bits.

Ver si ons Variablelength. Thislist contains only non-zero bytes. Each byte must be avalid
version, meaning that the most significant bit must be zero (0). At least one version
must be present.

@ DPPvO Version List must be sorted in increasing order. gof - 2008- 1- spec- 52

Sorting the list makes it easier to remove matching responses and find matching versions.
This version can only be used as described above in discovery on lossy transports.

A query is represented as a single byte PDU with just the header; a response is formed by appending a
list of version bytes after the header byte.

In order to optimize traffic, responses to multicast queries are sent using multicast, not unicast.

64

DOF Application Protocol

4.10. DOF Application Protocol

The goal of the DPSis to pass application protocols from one point to another. Each of these application
protocols must be identified as it passes through the network. This identification is through an assigned
Application Protocol Identifier (APPID).

APPIDs are assigned both for specific protocols, and aso for different versions of the same protocol.
Most application protocols are not described in this document. In that documentation will be the assigned
APPID for the protocol.

The method of passing, or encapsulating, the APPID and associated application data is defined here and
is standardized for the DPS.

The following shows the general format for APPIDs:

= General Application Header qof - 2008- 1- pdu- 13

7 6 5 4 3 2 1 0

Application ID

Application Data

Application ID Instance of Compressed Unsigned 16-Bitgof - 2009- 1- pdu- 1-Contains
the application identifier for the enclosed data.

Application Data Optional, variablelength. Contents are defined by the application.

The most common Application Identifiers are assigned in the range of 0-127, allowing them to be
compressed to asingle byte. Control protocols and protocols used mainly during setup should be assigned
using numbers greater than Ox7F.

G For acurrent list of registered versions, please contact the ODP-TSC or go to https://opendof.org/
registry-dps-protocol.

@ Application versions are registered with ODP-TSC before use. gof - 2008- 1-
spec- 53

Application Identifiers must be registered with the ODP-TSC before use in products.

Each APPID isindependent of the DNP and DPP used. This meansthat the same APPID can be used with
many different DNP and DPP.

The range of APPIDs from 0x6000 to Ox6FFF is reserved for security modes of operation.

@ Security modes of operation are assigned APPIDs from 0x6000 to Ox6FFF.
dof - 2008- 1- spec- 54

This range is critical because security modes of operation may appear unsecured on secure
sessions. Only thisrange of APPIDs s alowed this capability.

65

https://opendof.org/registry-dps-protocol
https://opendof.org/registry-dps-protocol

Peer-to-Peer Protocols and Client/Server Protocols

@ The use of any invalid APPID closes a lossless 2-node session. gof - 2008- 1-
spec- 55

DSPisused over all sessionsto negotiate or discover application protocols. The use of any APPID
(other than DSP) on a session before negotiation is complete is invalid. Note that DPP uses an
internal APPID for itself, which is exempt from this requirement. Once established, the use of any
non-negotiated or invalid APPID must result in the DPS session being closed.

As a special case, it is always allowed to pass an empty Application Data to an application. Thisis a
'no-op', or away of passing information to the application without requesting that it perform any specific
action. For example, an DPP cancel may not include a specific application PDU, but the application must
till be notified of the lifecycle change for the given operation.

@ Empty application PDUs are always allowed and defined as a no-op.
dof - 2008- 1- spec- 56

Other stack communication may occur on these datagrams, for example to notify the application
of lifecycle changes.

4.10.1. Peer-to-Peer Protocols and Client/Server
Protocols

The DPS can be used for both peer-to-peer and client/server protocols. Each application protocol must
specify whether it is client/server or peer-to-peer.

The following characteristics apply to peer-to-peer protocols:

» They can be negotiated by either (or both) nodes during DSP. If negotiated by either node, the protocol
may be used equally by both nodes.

 They do not distinguish between the client and the server. It is permissible for the application to specify
some behavior that is specific to the client or server, but any behavioral differences should be minor.

The following characteristics apply to client/server protocols:
» They must be negotiated by each node independently.

» The behavior and requirements of a node are dictated by its role — if both nodes negotiate the same
protocol then they act in both roles individually and simultaneously.

* Itisnot necessary that the application 'client' be the same as the transport 'client'. In fact the transport
‘client' may be the application 'server' depending on which node negotiates the protocol.

4.10.2. Context

The APP layer sits on top of the DPP layer.

For each received PDU the APP requires the following context information from the DPP, in addition to
the context provided by the DPP, DNP, and Transport:

66

APP Version Discovery

4.11.

4.12.

BUFFER The received APP data and associated length.

COMMAND/ Whether the PDU is an DPP command or response.

RESPONSE

OPID The operation identifier of the command or response.

DIRECTED/ Whether the operation is directed or flooded. This may not be known exactly

FLOODED depending on the specific DPP version, athough if it is not known then
FLOODED should be assumed.

LIFECYCLE Oneof INITIAL, RETRY, NEWSOURCE, TIMEOUT, or CANCELLED.

SECURE One of UNSECURE, AUTHENTICATED, or ENCRYPTED.

APP Version Discovery

As described above, there are problems attempting to discover all of the different versions of the different
DPS layersthat are in use in a network.

In the case of DNP and DPP version discovery the DOF Protocol Stack could not be fully utilized during
the discovery process. APP version discovery isdifferent, asit can use the full support of the lower layers
(including framing, operations, etc.).

Because of this, APP version discovery is incorporated into the DOF Session Protocol (DSP), discussed
later in this document.

DPS Intermediate Node Behavior

Intermediate nodes are defined as nodes which can forward operations to other nodes. They fall into two
categories:

» Transparent intermediate nodes or bridges.
» Normal intermediate nodes that include application behavior.

A bridge is something that does not modify the application PDU in any way, and maps both the DPS
versions and the transport in reversible and identical ways. For example, anode that bridges UDPto DLC
can do so without modifying the application PDU. It can also map transport behavior (unicast, broadcast,
multicast) to equivalent (or superset) behaviors on the other transport. The behavior of these nodes is
fully defined by the reguirements described in this paragraph — they do not need to deal with the full
requirements of this section.

Another simple case is a bridge going between transports with different capabilities — like streaming vs.
datagram. These nodes may not understand the operation behaviors of the application PDUs, but they may
need to understand differences in the behavior of the DPS over different transports. For example, they
may need to track operations so that appropriate 'Source Lost' behavior can be implemented. Obviously,
as the number of situations that a node must deal with increases then the more required behaviors it must
implement. Anyone writing an intermediate node should fully understand the requirements of this section
and also the requirements of the application PDUs that it will work with.

Note, however, that a primary goal of the DPS is that fully (or very) capable intermediate nodes can be
written that are agnostic to many application behaviors. Intermediate nodes must provide the common
DPP behaviors and manage operation state.

67

DPS Sessions

4.13. DPS Sessions

The preceding sections have dealt with the specifics of how the DOF Protocol Stack useslayered protocols
to transfer information from place to place. The description of sessions was introduced earlier in this
document. With the understanding of the DPS discussed in this section, the following descriptions of DPS
session establishment can be introduced.

Keep in mind the difference between a transport session and an DPS session. It is possible for a single
transport session to encapsulate multiple DPS sessions, even if the transport session is lossless. DPS
sessions aso include another layer of logical addressing. However, they do share terminology with
transport sessions.

In order to support the creation of sessions from sessions, the idea of a session server isintroduced here.
The definition of atransport server comes from the "Transport' section of this document. Servers are not
typically associated with sessions (other than they create them), although the DOF specification allows
for server-based sessions using a security state identifier (SSID). Similar to this ability is that of using
an existing session to create a new session, by treating one of the session endpoints (whether it was the
original client or server doesn’t matter) to create a new session.

Thisisdone by having the new session’ s client (whether or not it was the transport client) pick anew DNP
port (unique to the transport session) and using this port as the source of a packet to the existing session’s
DNP address. This packet is understood by the receiver as belonging to a new session of type '‘None', and
that it should take the role of the server for this communication.

The new session begins at the DSP/Security Negotiation phase (described below), allowing for security
and protocol negotiation to occur again on the new session.

The original transport session client maintains ownership of the transport session, which should remain
established as long as there are any established sessions that useit. Once all such DPS sessions are closed
the transport session may be closed.

4.13.1. Summary of Negotiation Phases

This section discusses the following negotiation phases, which are included here for reference in the
descriptions of the session lifecycles.

DNP/DPP Negatiation Described in this document, this negotiation only occurs on the
establishment of alossless transport session. This means that it does not
get repeated when a lossless DPS session is created from an existing
|ossless session.

DSP Negotiation Described in this document, this allows for negotiation of application
protocals. It occurs for each lossless DPS session.

Opened This point is defined as the transition between negotiating or discovering
application protocols and using them. An unsecured DPS session moves
from Opened to Established immediately because there is no Security
Negotiation phase.

Security Negotiation Thisphase uses application protocol s (either discovered onalossy session
or negotiated on alossless session) to establish asecure session, including
shared security state.

Established Thisisthe transition point for a session at which it becomes established.

It follows the negotiation phases discussed above. Secure sessions are

68

The 'None' Session

secure once established. Note that there are many different waysin which
an established session can be meaningless. For example, a session that
fails to negotiate permissions for required behavior would be unusable.
Sessionsin thiskind of dead-end situation should be closed with an error
indication to the application.

Session Closure This is the transition point from established to closed. A session that is
never established may be terminated.

@ Sessionsmust authenticate (if required) and be established within 30 seconds.
dof - 2008- 1- spec- 57

This timer begins as soon as the DSP session is opened.

The use of these negotiated protocols, including periodic use of the authentication protocol as required,
continues until the session is closed.

4.13.2. The 'None' Session

Asdiscussed in the Transport section, a server may receive datagrams for which no session exists. In fact,
all DPS sessions start in this state, even though the transport session exists. In a similar way, each new
DPS session actslikeit isin this state. However, there are timing restrictions on certain transport sessions
that mean that the DPS sessions cannot remain in the 'None' state forever — they must actually establish
asession.

Commands that do not require a session always execute in the 'None' session. They are never secure (as
security requiresasession to maintain state). Another way torefer tothisstateis'statel esslossy’ or 'stateless
datagram'.

The'None' session is characterized by the following characteristics:

» There is no negotiation, either of the DPS layer protocols or of application protocols. Discovery may
be used.

 Flag bytes are either present, or use defaults. There is no session to maintain state.
e Thereisno shared state between endpoints, so each PDU must be self describing.

e Thereisno security.

4.13.3. Lossy 2-Node Sessions

There are two methods that can be used to create alossy session: DSP Open, and Security Negotiation.
Both of these methods follow the same general process:

69

Lossy 2-Node Sessions

Figure 4.10. Lossy Session Lifecycle

DNP/DPP

Not Established Discovery
DSP Open

Compatiblp?

No

Secure No
Session?

Yes

Security

Nego-
tiation

Y
Success? & Established
No

DSP Open is discussed earlier in this section, and creates unsecured DPS sessions between alossy client
and server. An DNP address is used on the server to identify the session. Note that an unsecure lossy
session can be transitioned to a secure lossy session by using an authentication protocol. In thiscaseitis
the DPS addresses that define the session rather than a security state identifier.

Sessions can a so be created through security negotiation. Authentication protocolsthat allow thisbehavior
describe how it is accomplished. In this case the same server address is used, and the session is identified
by using a security state identifier (SSID).

In the case of sessions opened through security negotiation there is a question of which application
protocols may be used. These sessions do not negotiate, but rather use discovery to determine which

70

Lossless 2-Node Sessions

protocols may be used. In general, the same rules as for negotiated sessions apply, meaning that
incompatible protocols may not be used.

In all cases, these sessions are controlled by the client. Peer-to-peer protocols may not be used on the
session until either the client sends an application datagram using that protocol or acknowledges to the
server that the protocol is acceptable using an DSP Query Response. At that point the particular version
of the protocol is determined and the server may respond or generate its own datagrams. The client my
initiate a client/server datagram at any time, and its use should remain consistent. If the server desires to
use a protocol then it should use the DSP Query to determine what is appropriate. This request may be
made directly to the client node of the session. Note that the server already knows the application versions
that it advertised in the DSP Open response, and by getting an DSP Query response knows the versions
allowed by the client. There exists a potential race condition in the case where the client desires to use an
old version of an application protocol. Inthiscaseit could respond to the server’ s Query including multiple
versions, allowing the server to begin speaking with aversion of its choice, and the client simultaneously
begins using a different version. This is resolved through the intent of the client. If the client desires to
use a particular application (including the version) then it should only include that version in its Query
response. If it does not care, and in fact is not going to initiate the use of an application protocol, then it
can allow the server to choose by returning multiple versions.

Note that it is possible to have lossy 2-node sessions that require security, or alow both, or only allow
unsecure. The particular state is determined by the response to the DSP Open that begins the session. See
the DSP Open command for more information.

Lifecycle management of lossy 2-node sessions is handled through the DSP or security negotiation
protocol, depending on how the session was created.

4.13.4. Lossless 2-Node Sessions

When lossless sessions are involved, independent of the transport used, full negotiation is required for
theinitial transport session. The following diagram shows the states that alossless session passes through
before application data can be exchanged. Note that there are two places that sessions can originate, with
only the first session after transport session establishment requiring DNP/DPP negotiation:

71

DNP/DPP

Not Established Nego-
tiation

Compatiblp?

DSP Ne-
gotiation

Success?

Yes

Secure

Session?

Yes

Security

Nego-
tiation

Yes

Success?

No

Established

72

N-Node Sessions

Thedifferent protocol s used in the phases shown are discussed in this document or in the different security
documents.

Lifecycle management of lossless 2-node sessions is handled through the DSP.

4.13.5. N-Node Sessions

Multiple-node sessions are always created between servers and always assume lossy transports. The sense
of an 'established' n-node session is a so somewhat different than a2-node session, asit is possible to have
an established 1-node session (no other members).

N-node sessions are always established using a group-management security protocol. They may utilize
version discovery, but they do not use any negotiation except for security negotiation (managed by the
group-management security protocol).

Since n-node sessions always involve servers communicating with other servers, they require the use of a
security state identifier (SSID). Further, since n-node sessions rely on transport capabilities for broadcast
or multicast, the use of DNP portsis not possible.

Lifecycle management for N-node sessions is handled differently for multicast vs. unicast. Multicast N-
node sessions have no lifecycle management for individual nodes, although the sessionitself hasalifecycle
based on their being any members or not.

Unicast N-node sessions are a hybrid of lossy 2-node session characteristics and group characteristics. It
is beneficial in these sessions to better manage node state (closer to lossy 2-node session capabilities).
However, the protocols that manage these sessions do not have membership tracking commands. It is
typical for lossy 2-node sessionsto usetraffic received in order to verify the activity of the nodesinvolved.
The DPP Ping and Heartbeat are examples of commands that can be used. Upon joining a unicast N-node
session, a node should unicast a Heartbeat command to the hub. This command may be lost (since these
are lossy sessions), and so the hub must not rely on its reception. If the hub desires to know the state of
anode then a Ping should be sent.

When nodes leave a unicast N-node session they should send an DSP Close/Terminate. The response to
this command may be used as an indication that the packet was received. Note that while the session state
associated with anode may be cleared using this technique, the security state must not be cleared. To clear
the security state could allow replay attacks. Note that normal N-node security modes automatically clear
unneeded state over time.

@ Nodes joining N-node unicast sessions should confirm by sending an DPP
Hea.rtbea.t tO the hUb dof - 2008- 1- spec- 58

The hub may also use an DPP Ping to verify the node hasjoined. The session should be considered
established only after such aconfirmation has been received, which could be any encrypted traffic
or the response to an DPP Ping.

@ Nodesleaving N-node unicast sessions should send an DSP Close/Ter minate.
dof - 2008- 1- spec- 59

This may be repeated until aresponse is received, but should not continue forever. Security state
must not be affected by this command, although session state may be cleared.

73

74

5. DOF Session Protocol (DSP)

The DOF Session Protocol (DSP) isan DOF application protocol. It isuniquein that it is not negotiated,
and is required to open an DPS session. DSP is always used on sessions that include only 2 nodes, and
can be used in all cases for APP version discovery. DSP negotiation is required on lossless sessions, and
the Close/Terminate PDU is also used on lossy sessions.

DSP is used to negotiate which application-level protocols may be used on a session, to configure any
optionsfor those application-level protocols, and (optionally) to terminate and close sessions. This protocol
isbased on PPP' s Link Control Protocol in theory, although major changes have been made to the packet
structure.

The DOF Protocol Stack section describes the general lifecycle of aconnection. DSPisan integral part of
thislifecycle, particularly during the beginning of the session.

Part of the negotiation involves requiring an authentication protocol or not. The signal as to whether to
require authentication or not may come from the application.

There is no required negotiated closure of a session. As a convenience, a Close/Terminate command may
be sent before closing a session, but the DPS does not requireit.

5.1. Application Format

DSP uses an application identifier of 0x00 (0). The value that defines DSP is fixed; athough the
specific behavior of DSP can be controlled by the negotiated DOF Presentation Protocol. This means that
negotiation of the DOF Presentation Protocol (discussed earlier) also negotiates the specific behavior and
version of DSP that will be used on that link.

This version of DSPis associated with all DOF Presentation Protocols as of the time of publication.

6 DSP is a configuration protocol and should not necessarily be using a short APPID. However,
APPID Oisspecia. APPID Oisreserved in DPS for application version query in DNP and DPP.
DSPissimilar, but has additional functionality.

When used in the DPS, the following format is used.

= DSP Application Format qof - 2008- 1- pdu- 14

Instance of General Application Headerqof - 2008- 1- pdu- 13-

Application ID } Application ID = 0x00 (0)

Command/Response

Application ID Instance of Compressed Unsigned 16-Bitqof - 2009- 1- pdu- 1.Contains
the application identifier for the enclosed data.

Comand/ Response Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15-

75

DSP State Machine

Each application PDU uses the following format.

= |[DSP Command/Response Format gof - 2008- 1- pdu- 15

Opcode

Data

Opcode Onebyte. The value indicates the particular operation.

Dat a Optional, variable length. Each Opcode will define the contents of this field.

5.2. DSP State Machine

The following state machine controls the DOF Session Protocol when used on lossless sessions. Note that
there are many similarities between this state machine and the state machine of LCP as described in RFC
1661. The following assumptions are made for DSP that simplify the state machine, most of which relate
to the fact that DSP is built on a connected transport.

» The PPP "Up" and "Open" events are tied together. "Up" would refer to the session being opened;
"Open” would refer to the administrator running the server process (accepting sessions).

» Thereis no dedicated serial connection, making it impossible to have crossovers and resulting in the
collapse of Closed, Stopped, Closing, and Stopping states.

» Once negotiated, configuration cannot be changed. Attempting to do so closes the session.
» There are no retries, asthe lower layer is assumed to be error-free and guaranteed delivery.
» There are no defined timeouts, other than an overall DSP timeout defined later.

» Thenegotiation is serialized, and so each side goes through the same state transitions but in a different
order.

The following table identifies the Events that drive the state machine:

Table5.1. DSP Event Descriptions

Event Description

Open A session has been accepted at alower layer.

Close The session is requested to close either by software
or an operator.

Down The lower layer has closed the connection.

RCR+ An acceptable Configuration Request has been
received.

RCR- An unacceptable Configuration Request has been
received.

RCA A Configuration Acknowledge has been received.

76

DSP State Machine

Event Description

RCN Either a Configuration Negative Acknowledge or
Configuration Reject has been received.

RTR A Close/Terminate command has been received.

RTA A Close/Terminate response has been received.

RUC An unknown Opcode has been received.

The following table identifies the Actions that are performed by the state machine:

Table5.2. DSP Action Descriptions

Action Description

scr Send Configuration Request if possible, otherwise
send a Close/Terminate command.

str Send a Close/Terminate command.

sta Send a Close/Terminate response.

tlu The layer is up, meaning that application protocols
can communicate.

tid Thislayer is down, meaning that application
protocols may no longer communicate.

sca Send Configuration Acknowledge.

scn Send either a Configuration Negative

Acknowledge or a Configuration Reject.

This is the state transition table. States are indicated by the column, with the event response on the row.
Notethat all transitions into state O (zero) from another state indicate that the session must be closed at the
lower layer and the state machine can terminate. The same is true for the Close and Down actions while
in state O (zero) —which istheinitial state for the server. The implementation should attempt to make sure
that any outstanding data (for example, a Close/Terminate response) is sent before the session is closed.
This could be done using atimeout or any other method.

DSPis negotiated in both directions, but serialized. Negotiation is first done by the client, and assuming
success the server then negotiates. Thisis indicated in the state machine by having separate initial states
for client and server.

Table5.3. DSP State Transitions

Event 0 (Initial) 4Term-Sent |6 Request 8 Respond 9 Opened
Open (Client) |scr/6 - - - -

Open (Server) |/8 - - - -

Close - - str/0 str/0 tld,str/4
Down - /0 /0 /0 tld/0
RCR+ (Client) |- - /0 scatiu/9 tld,str/4
RCR+ (Server) |- - /0 sca,scr/6 tld,str/4
RCR- - - /0 scn/8 tld,str/4
RCA (Client) |- - /8 /0 -

RCA (Server) |- - tlu/9 /0 -

7

Timeouts

Event 0 (Initial) 4Term-Sent |6 Request 8 Respond 9 Opened
RCN - - scr/6 /0 -

RTR - sta/0 sta/0 sta/0 tld,sta/0
RTA - /0 /0 /0 /0

RUC - - str/4 str/4 tld,str/4

These statetransitionsareonly dightly related to RFC 1661, although much of thetheory remainsthe same.

5.2.1. Timeouts

The DSP state machine initializes when the DPS completes DNP and DPP negotiation. DSP must not
allow non-responsive sessions to indefinitely keep themselves open. This same requirement applies even
when negotiation is not required (as in the case of lossy 2-node sessions).

©

DPS 2-node sessions must open within 30 seconds. gof - 2008- 1- spec- 60

This period begins at the end of negotiation or when the DSP Open is received. It ends when the
DPS session is open. Failure to open must result in the DPS session being terminated.

5.3. Configuration Options

The configuration option listsused in the Configuration Request and Configuration Negative Acknowledge
PDUsfollow the sameformat. Each Option listisformed from alist of Attribute-Value Pairs, each of which
has an attribute (formed from a code and data) and a value (which may be empty, and includes a length).

Attributesaredealt with by DSP. Each attributeisformed by combining an Attribute Codewith Attribute
Data. Associated with each attribute is avalue, formed from the Value L ength and Value Data.

S

Attribute/Value Pair gof - 2008- 1- pdu- 16

Attribute Code

Attribute

Attribute Data

Length

Value

(not present)

} Optional, controlled by Length

Attribute Code

Attribute Data

One byte. This field identifies the attribute. It must be registered with

the ODP-TSC.

Two bytes, MSB. This field completes the definition of an attribute in

combination with the code.

Onebyte. Thisfield determinesthe length of the Val ue. It may be zero,
in which casethe Val ue field is not present.

78

Option Consistency

Val ue Variable length. Optional, controlled by Lengt h. Contains the value
for the associated attribute.

Attribute codes may be either single- or multiple-valued. A single-value attribute code means that the
attribute code may appear asingletimein aConfiguration Request. A multiple-value attribute code means
that the attribute code may appear multiple timesin a Configuration Request. Note that it isthe Attribute
Codethat is single-value or multiple-value. An attribute (code and data) may always appear asingletime
in any Configuration Request.

6 | An 'attribute’ is always the combination of an Attribute Code and an Attribute Data.

Attributes are further differentiated by their value. Each attribute definesthe format and restrictions placed
on its associated data. Each data format unambiguously defines a set of behaviors associated with the
negotiated attribute, which is understood by both the requestor and the acknowledger.

o

For a current list of registered codes, please contact the ODP-TSC or go to https.//opendof.org/
registry-dsp-attribute.

@ DSP Attribute Codes areregistered with ODP-T SC before use. gof - 2008- 1-
spec-61
DSP Attribute Codes must be registered with the ODP-TSC before use in products.

The use of aspecific attribute code has benefit during negotiation: if aparticular attributeis not understood
by the receiver, then the response will contain al of the appropriate choices for attribute data associated
with the code. While this response can grow over time, it allows optimizing the next request based on
the acceptable values.

This means that each specific attribute code should be used with related attribute data. For example,
families of protocols or protocols that are used in a certain way (as will be seen with authentication
protocol) are appropriate uses of the attribute code. However, there are only 255 possible attribute codes.
Even so, the handling of each attribute code is uniform in the way it is negotiated.

5.4. Option Consistency

Itisnot arequirement that DSPitself understand the optionsthat it negotiations—it ismore of anegotiation
framework. However, it isrequired that at the end of negotiation that the options are consistent (discussed
later on).

This usually means that the application (or at least the application protocol implementations) must be
involved in the negotiation process in some way, and in particular should approve the final accepted
options.

5.5. APP Version Discovery

As described above in the section on the DOF Protocol Stack, there are problems attempting to discover
all of the different versions of the different DPS layersthat are in use in a network.

In the case of DNP and DPP version discovery the DOF Protocol Stack could not be fully utilized during
the discovery process. APP version discovery isdifferent, asit can use the full support of the lower layers
(including framing, operations, etc.).

Because of this, APP version discovery isincorporated into this protocol.

79

https://opendof.org/registry-dsp-attribute
https://opendof.org/registry-dsp-attribute

APP Version Discovery

There are two PDUs defined for APPID version query over lossless transports. The first is a query, and
second isaresponse, which is sent some time after the query, and which correspondsto alist of application
identifiers supported by the sending node.

@ Unadvertised APPIDs should not be discoverable. gof - 2008- 1- spec- 62

APPID zero (0) and Ox7FFF are not advertised. In the case of DNP and DPP there is no version
0 defined apart from the version query protocol itself. The application layer is different because
thereisan APPID zero (0) defined, DSP. APPID Ox7FFF is defined for common DPP behaviors
and is not advertised.

Responsesto multicast queries must be sent within three (3) minutes of aquery, but the exact timing should
be determined randomly and controlled by other network traffic as described below. Responses to unicast
queries should be sent quickly.

Responses to unicast queries are sent unicast.

Figure5.1. DSP Unicast Query

>
o

1. Query issent from A to B.
2. Responseissent from B to A immediately.

In the example above, node Query wants to determine the APP versions supported by node A. It sends a
unicast DSP Query PDU to A. Since the PDU is unicast, node A immediately responds without any use
of timersor delay.

For multicast queries, between the time of the query and the time of the response three events can prevent
sending aversion in the query response (that consists of a set of versions):

* The node with a pending response sends a multicast PDU using the version on the same SESSION as
the query.

» A multicast PDU is received by the node with a pending response using the version on the same
SESSION as the query.

* A multicast query response is received from another node with a version listed on the same SESSION
asthe query.

Note that in these cases the SESSION includes the set of nodes that can communicate using multicast. The
state and timers must be kept for each SESSION independently. For example, a node that uses multicast
on multiple addresses would require state for each.

80

APP Version Discovery

The goal of thislogicisto only send information that cannot be determined by watching network traffic.
The specific goal of version detection is not to discover nodes on the network, but rather to just discover
versions of protocolsthat arein use.

Figure5.2. DSP Multicast Query

=
los}

C

Query E
(1

Start Start
Timer Timer
|
- Timer

<-- - Expires

Response
©

Cancel
]

K — — —

1. Query issent from A to all nodes (multicast).

» B and C both start randomized timers.

» Timer on node C expires.
2. Responseis sent from C to all nodes (multicast).

» Node A receives response.

» Node B cancels timer, preventing response.
In the example above, a node Query initiates version discovery by multicasting an DSP Query PDU. This
PDU isheard by nodes A and B. Both of these nodes pick random times within the next three minutes and
start timers for when they will respond. The timer on B expires, and so B sends a multicast DSP Query
Response. This PDU contains the same version as A, and so node A cancels its timer without sending a

response.

If each version in the pending query response is covered by one of these cases then the query responseis
not sent. Otherwise at least the versions that have not been seen are sent.

For example, assume that a node N speaks version A and B of APP. It receives a multicast PDU that is
an DSP Query. It determines (randomly) that it will send its response in 2 minutes. The response will be
aPDU consisting of A and B.

After some time and before the two minutes pass a PDU is multicast from node N using APP version A.
Sometime later, but still before the two minutes pass, a multicast PDU is received by node N using APP
version B. In this case, the pending response PDU is cancelled.

81

DSP Command and Response Definitions

Assume however that the second PDU is not received. The 2 minutes pass. In this case a response
containing at least B is sent.

5.6. DSP Command and Response Definitions

The following sections cover each command and response in the DOF Session Protocol. Note that DSP
begins with the client sending a Configuration Request to the server. DSP then negotiates client options,
followed by server options.

5.7. Configuration Request

Request a particular set of options on a session.
Session: Lossless

Addressing: Unicast

Unsecured: Required

Encryption: Not allowed

M essage authentication: Not allowed
Permission (command): None

Permission (response): None

= Configuration Request gof - 2008- 1- pdu- 17
COMMAND/DIRECTED
NOOPID
Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15
Opcode } Opcode = 0x01 (1)
Options
Opcode Onebyte.
Options Array of Attribute/Value Pairgos-2008-1-pdu-16-This field list contains the
requested options.
= Configuration Acknowledge gof - 2008- 1- pdu- 18
RESPONSE
Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15
Opcode } Opcode = 0x02 (2)
Opcode Onebyte.

82

Configuration Request

1l

il

1l

Configuration Negative Acknowledge gof - 2008- 1- pdu- 19

RESPONSE
Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15

Opcode } Opcode = 0x03 (3)

Options

Opcode One byte.

Options Array of Attribute/Value Pairgof-2008-1- pdu- 16-This field list contains the
reguested options.

Configuration Reject gof - 2008- 1- pdu- 20

RESPONSE
Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15

Opcode } Opcode = 0x04 (4)

Attributes

Opcode Onebyte.

Attributes Array of Attribute Data Listgof - 2008- 1- pdu- 21-This field list contains the
rejected attributes.

Attribute Data List gof - 2008- 1- pdu- 21

Attribute Code

Count

Optional, controlled by Count
(not present)

Attribute Data }

Attribute Code Onebyte Thisfield identifies the attribute. It must be registered with

the ODP-TSC.

Count Two bytes, MSB. This field determines the length of the At tri but e
Dat a. It may be zero, inwhich casethe At t ri but e Dat a field isnot
present.

83

Small Implementation Hints

5.7.1.

5.7.2.

5.7.3.

Attribute Data Two bytes, MSB. This list contains Attribute Data values that are
understood and are acceptable with the associated Attribute Code.

Small Implementation Hints

This command and the responses must be supported. A critical aspect for backward (and forward)
compatibility isthe ability to determine whether or not arequested configuration is acceptable. Incorrectly
acknowledging a configuration without understanding it is a serious (and potentially fatal) error. Shortcuts
should not be taken when validating a request or responding to a request.

It is possible that a small implementation has a single, hard-coded outbound Configuration Request
command, and if it is rejected then the session will fail.

It is critical that an application correctly respond with acceptable configuration options so that the other
node can make adjustments.

Flows

Configuration Request() _, Configuration Acknowledge(): Success
Configuration Request() _, Configuration Negative Acknowledge(): Retry requested

Configuration Request() _, Configuration Reject(): Retry requested

Details

Once a transport-level lossless session is established between two nodes, each side must issue a
Configuration Request (with the client going first, and the server continuing once the client negotiation is
complete). Thisis done after the DOF Protocol Stack negotiation is completed. The configuration options
field isfilled with the current desired configuration of the sender.

Upon reception of a Configuration Request, an appropriate reply must be transmitted. The
specific reply will be based on whether the request is not understood (Configuration Reject), not
acceptable (Configuration Negative Acknowledge) or accepted (Configuration Acknowledge). A single
Configuration Acknowledge is alowed from the server and client. Multiple Configuration Reject and
Configuration Negative Acknowledge responses are allowed.

For each request and negative acknowledge, the Optionsfield isvariablein length, and containsthe list of
attribute/value pairs that the sender desires to negotiate or respond with. The list of attributes and values
are responded to as a group with a single response, although the negotiation continues until a timeout or
an acceptable request is made.

A client (meaning the node that requests the session) must send a Configuration Request as soon as
possible. A server must wait until it has acknowledged the client configuration before negotiating its own
options. In this case the server is not required to negotiate any options, in which case an empty request is
sent. This may be done, for example, if the clients request includes everything that the server desires. The
server may request additional options. However, the server must not change any options requested by the
client, and the client must accept any options requested by the server that the client negotiated.

If every attribute received in a request is recognizable and all values are acceptable, then the
implementation must transmit a Configuration Acknowledge. This indicates that the sending node is
prepared to begin using the protocols and protocol options specified.

Details

@ DSP must result in a consistent set of negotiated options. gof - 2008- 1- spec- 63

This requirement is met by having the client negotiate first. Once the server has acknowledged
the client options they become fixed. The server may then negotiate additional, non-conflicting
options. Any attempt by the server to negotiate a conflicting option, or arejection by the client of
an option that is already fixed, must result in the session being closed. This applies in particular
to peer-to-peer options, client/server options may be negotiated in each direction differently. DSP
uses the application to determine the specific requirements of consistency.

@ DSP must result in an unambiguous set of options. gof - 2008- 1- spec- 64

Ambiguity in this case refers to the application understanding of the final set of options. For
example, if asession that requires security failsto negotiate optionsthat allow for key distribution,
then the means for obtaining security are ambiguous. The samewould betrueif options contradict
each other. This is possible even if the options themselves (compared against each other) are
consistent. For exampl e, negotiating multiple authentication protocols for a secure session would
be ambiguous, as the two options contradict each other (each option says to use a particular
protocol to authenticate, but only a single authentication protocol can be used).

If every instance of the received attributes is recognizable, but some values are not acceptable, then
the implementation must transmit either a Configuration Negative Acknowledge or (optionally) a
Configuration Reject. In the case of a negative acknowledge, the Options field is filled with information
that is based on the unacceptable attributes from the request. All attributes with values that are acceptable
arefiltered out of the Configuration Negative Acknowledge, but otherwise the attributes from the request
must not be reordered.

For each requested attribute/value pair in the request, the negative acknowledge either removes it (if
acceptable), or replaces it with alist of attributes that enumerate acceptable values for the attribute. It is
possible that the attribute data format can encapsulate these optionsin a single block, which is acceptable
aslong asthe negotiated meaning is unambiguous (in other words, both the sender and receiver understand
the single set of optionsthat are negotiated). The responselist associated with agiven attribute may contain
asingle entry, or several.

Finally, after the requested attributes have been responded to as described, the sender may include
additional attribute/value pairs at the end of the negative response. These attributes act as 'hints' to the
other node to include these options in its next request. Again, these lists may include multiple choices for
a given attribute, although the requestor must pick a single acceptable attribute of each to include in its
next request. If a suitable choice for each 'hinted' attribute is not appropriate for the sender then it may
attempt to continue negotiation without including the attribute. However, if no other changes are made
to the request then it is impossible for the response to be accepted. It is aso possible that the different
attributes listed are not allowed in the same request. I n this case the requestor may choose the appropriate
options that do not conflict.

For example, a server that requires authentication may understand different options using different
attributes. A single negative acknowledge may list several options. However, the request is not allowed
to request multiple authentication protocols in the same request and so the requestor must choose one of
the suggested options.

If some of the received attributes in a request are not recognizable or are not acceptable for negotiation
(as configured by the application), then the implementation must transmit a Configuration Reject. The
response includes a list of each Attribute Code field that is not acceptable, along with a list of the
associated Attribute Data fields that are acceptable to the sender of the reject.

85

Retry Behavior

5.7.4.

5.7.5.

5.7.6.

Optionally, and similarly to the Configuration Negative Acknowledge PDU, the Configuration Reject PDU
may contain attributes that were not present in the corresponding request. In this case the reject sender
is suggesting to the other node that additional options (using those codes) should be included in the next
request.

For example, a server may desire a session to be secure. There are two possible responsesto arequest that
does not include the appropriate options:

e Use Configuration Negative Acknowledge. In this case the server must provide specific options
(including data). Thisis avery specific way of suggesting that an option be included.

» Use Configuration Reject. In this case the server need only include the attribute, without needing to
specify the attribute data. This gives the client more flexibility in how to form the next request.

Reception of avalid Configuration Reject indicates that a new Configuration Request should be sent that
should only include the Attribute Code and Attribute Data that have not been rejected.

Reception of a valid Configuration Negative Acknowledge indicates that a new Configuration Request
should be sent with the Options modified to include data that was included in the negative acknowledge.

Retry Behavior

This command is used only on lossless sessions, and retries are not allowed.

Routing Rules

DSP must not be routed.

Sequence Diagrams

Thisfirst sequence shows the easiest negotiation possible.

Figure 5.3. Basic DSP Negotiation

Client Server

o - Request .
Acknowledge e

Request
(3

e Acknowledge

1. Request is sent from the client.
2. Request is evaluated and accepted, acknowledge sent from the server.
3. Request is sent from the server.

4. Request is evaluated and accepted, acknowledge sent from the client.

86

Sequence Diagrams

In this sequence the client requests a configuration. The server acknowledges, and then beginsits request,
which is acknowledged.

Figure5.4. Basic DSP Negotiation

Client Server
B Request]
e Reject
Request e
e NAK
Request e
e Acknowledge
Request 6
Acknowledge o

1. Request is sent from the client.

2. Request is evaluated and either not understood or unacceptable, reject sent from the server.

3. A modified request is sent from the client.

4. Request is evaluated and understood, but is unacceptable, negative acknowledge sent from the server.
5. A further modified request is sent from the client.

6. Request is evaluated and accepted, acknowledge sent from the server.

7. Request is sent from the server.

8. Request is evaluated and accepted, acknowledge sent from the client.

In this more complicated example only a single negotiation is shown. In step 1 the client issues a
configuration request for authentication protocol 1, application protocol 2 with options a and b, and
application protocol 4.

In step 2 the server rejects authentication protocol 1 and application protocol 4. The client dropsitsrequest
for authentication because it doesn't know any alternate authentication protocols. It also must decide a
fallback for protocol 4, and it chooses APPID 3.

The changes to its request can be seen in the request in step 3. The request for application protocol 2
has not changed, but application protocol 3 has replaced the request for 4 and the authentication protocol
request isgone.

The server now issues a negative acknowledge in step 4. The response contains a list of al options that
would be acceptable. In this case the requested options a and b are not allowed. Again, the client must
determine an appropriate fallback. In this case the choices allowed are presented.

87

Open

In step 5 the client makesitsthird request. It has chosen application protocol 2 with optionsaand ¢ (which
was a choicein the negative acknowledge).

In step 6 the server acknowledges the choices. The two protocols with the selected options will be used.

5.8. Open

Open a stateful session on a lossy transport.
Session: Lossless

Addressing: Unicast

Unsecured: Required

Encryption: Not allowed

M essage authentication: Not allowed
Permission (command): None

Permission (response): None

= |Open (command) dof - 2008- 1- pdu- 22
COMMAND
DURATION optional
DIRECTED
OPID
Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15
Opcode } Opcode = 0x06 (6)
Opcode Onebyte.
= |Open (response) gof - 2008- 1- pdu- 23

RESPONSE
Instance of DSP Command/Response Formatyof - 2008- 1- pdu- 15

Opcode } Opcode = 0x06 (6)

Application IDs

Opcode Onebyte.

Application I Ds Array of Compressed Unsigned 16-Bitqof - 2009- 1- pdu- 1-

= | SecureOpen (response) gof - 2008- 1- pdu- 24

RESPONSE

88

Open

Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15

Opcode } Opcode = 0x07 (7)

Application IDs

Opcode One byte.

Application I Ds Array of Compressed Unsigned 16-Bitqof - 2009- 1- pdu- 1-

@ Open response (both cases) Version List must be sorted in increasing order.
dof - 2008- 1- spec- 65

Sorting the list makes it easier to remove matching responses and find matching versions.

Thiscommand is used to request the creation of anew session on alossy transport and also to discover the
set of protocols that are acceptabl e outside of a session. These two cases are distinguished by the duration
of the operation as discussed below. In all cases the command is sent unicast and must include an DPP
operation identifier.

Thefirst, and easiest, caseiswhen the duration is zero. In this case no session is established, but aresponse
issent with an APPID List that contains the application protocols that are acceptable by the node outside
of asession, or an empty list if there is afailure. Note that this response is different from that of Query,
because a Query outside of a session responds with all protocols understood, whether inside or outside
asession.

Note that a non-error response should be sent when the duration is zero even if sessions are not normally
supported — in other words even if a failure would have been returned if the duration were greater than
zero. Thisallowsthe use of this packet to discover application protocolsthat can be spoken without having
an active session.

The second case applies when the duration is greater than zero. In this case, receivers of this command
should begin the establishment of a session with the sender. Each session request is associated with the
request operation identifier, which is used to uniquely identify each request and prevent aliasing and
retransmission problems. The duration of the operation controls how long theinitial handshake of creating
the session can take. The handshake follows this procedure:

» The client sends an Open, with an operation identifier and duration. This Open establishes the DNP/
DPP versions that will be used on the session. It also begins the timeout period for the DPS session to
be open, limiting the duration available in this command.

» The server assigns a logical address for the session. This must use the same transport address and a
new DNP port. The Open response is sent, unicast, and using the same operation identifier. If the server
cannot create the session, then aresponse is sent unicast from the original target address (no new DNP
port isused), and with an empty APPID List. Theempty APPID List indicatesthefailureto the client.
The APPID List indicates the application protocol s that are acceptable by the node on the new session.

» The client sends a datagram to the server using the new logical address. The receipt of this datagram
on the server compl etes the opening of the session. The choice of this packet should be guided by the
security discussion (bel ow) which places certain requirements on thefirst application protocol command
that is sent.

89

Query

Until the session is opened the client may use DPP to cancel the request. This terminates the session.

When opened, the session may need to proceed through security negotiation. Secure sessions are not
established until this is completed. Determining whether the server requires security depends on the
Opcodeused intheresponse. Only in the case of aserver that requires asecure session sending a successful
response is the value 0x07 (7) used for Opcode, and only in the response PDU.

If the server alows, but does not require, security the same problem of determining whether the session
will be secure exists and must be determined by the client. The client declares its security desire through
the choice of the PDU that it uses to open (and possibly establish) the session (the last step described
above). There are three cases:

» Theclient sends and DNP, DPP, DPP Common, or DSP packet. These serve to open the session but do
not determine the security desire, delaying the determination until alater packet.

» The client sends a packet from an authentication protocol (including a no-op). This indicates that the
session will be secure. Authentication protocols are identified as part of their protocol registration, and
can be found with their registration on https.//opendof.org/registry-dps-protocol.

e The client sends a packet from a non-authentication protocol (including a no-op). This indicates that
the session will be unsecured.

The packet received indicates to the server whether the session is established (non-secure) or opened and
enters security negotiation (secure). Note that a session that enters security negotiation is not established
until security negotiation successfully completes.

Once the session is established it may be maintained using periodic datagram exchanges (DPP Heartbezat,
DPP Ping). The session is closed either through timeout, or the Close/Terminate command can be used.

5.9. Query

Request all Application IDs on a network, or those acceptable on a session.
Session: Lossy (2-node), Lossy (n-node), Lossless

Addressing: Unicast, Multicast, Unicast

Unsecured: Allowed

Encryption: Allowed

M essage authentication: Allowed

Permission (command): None

Permission (response): None

Query (command) gof - 2008- 1- pdu- 25

COMMAND

DIRECTED

NOOPID

Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15

il

Opcode } Opcode = 0x00 (0)

Opcode Onebyte.

90

https://opendof.org/registry-dps-protocol

Close/Terminate

Query (response) qof - 2008- 1- pdu- 26

RESPONSE
Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15

ik

Opcode } Opcode = 0x00 (0)

Application IDs

Opcode Onebyte.

Application IDs Array of Compressed Unsigned 16-Bitqof - 2009- 1- pdu- 1-

@ Query responseVersion List must besorted inincreasing order. gof - 2008- 1-
spec- 66

Sorting the list makes it easier to remove matching responses and find matching versions.
In order to optimize traffic, responses to multicast queries are sent using multicast, not unicast.

Queriesmadein the'none' session alwaysresult in aresponsethat includesall protocol versions understood
by the sending node. Multicast Queriesfurther follow therulesdescribed earlier for APPversion discovery.

Queriesmade in a session result in response that includes only those protocol versions that are acceptable
at the time of the request. For example, after creation of alossy 2-point session using the Open command
the acceptabl e protocols may change. This can occur if the session must be secured. Once secured, using
the Query command on the session will return the protocols that are acceptable on the secured session.

This behavior is aso true (secured and unsecured) when this command is used by the server in a lossy
2-point session. In this case the client will respond with the acceptable protocols on that session. This
command may be used in secure n-point sessions. In this case the handling is as in the unsecure none-
session, but scoped to only nodes in the secure session.

5.10. Close/Terminate

Request that a session be closed or terminated.
Session: Lossy (2-node), Lossless

Addressing: Unicast

Unsecured: Allowed

Encryption: Allowed

M essage authentication: Allowed

Permission (command): None

Permission (response): None

Close/Terminate (command) gof - 2008- 1- pdu- 27

1l

COMMAND

91

Small Implementation Hints

DIRECTED
NOOPID
Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15

Opcode } Opcode = 0x05 (5)

Opcode Onebyte.

ik

Close/Terminate (r esponse) gof - 2008- 1- pdu- 28

RESPONSE
Instance of DSP Command/Response Formatqof - 2008- 1- pdu- 15-

Opcode } Opcode = 0x05 (5)

Opcode Onebyte.

5.10.1. Small Implementation Hints

This command is completely optional.

5.10.2. Flows

Close/Terminate() _, response(): Success

5.10.3. Detalls

DSP includes a Close/Terminate command in order to provide a mechanism for the orderly closing of an
established session or the termination of an open session. The security used on the command and response
must match that of the established secure session that it is used on.

An implementation wishing to close a session should transmit a Close/Terminate command, and the
receiver should respond with a Close/Terminate response.

Upon reception or sending of a Close/Terminate response the session should be closed. Thislogic allows
for previously sent packetsto be 'flushed' before the sessionisterminated. It istypical that the sidewishing
to closethe session hasrecently sent packetsindicating, for example, some error condition. If those packets
were sent, followed by a Close/Terminate command, and then immediately the session were closed, there
would be a chance that none of the packets will actually be sent before the session is closed. In this case
the other side of the session is left without the error information that would inform it of the reason that
the session was closed.

Waiting for a Close/Terminate response allows for more certainty that all previously sent packets have
actually been received by the other side of the session.

The implementation should not wait indefinitely for the Close/Terminate response, but there is not a
specified timeout.

92

6. External PDU Reference

6.1. DOF Common Types, OpenDOF TSC,
[dof-2009-1] (7.0.1, 12 January 2018)

q_'

Compressed Unsigned 16-Bit gof - 2009- 1- pdu- 1

6 5 4 3 2 1 0

A Value
i A
Value (cont) } Optional, controlled by
(empty)
A One bit. Controlsthe size of Val ue.

Val ue Either seven or fifteen bits, MSB, controlled by A. If the A field is zero then the
Val ue is contained in asingle byte. If the A field is one then the Val ue is passed in
fifteen bits with the least significant bits passed in a second byte.

93

94

