
Basic DOF Security
Programmer’s Guide

Version 7.0



i

Table of Contents

Chapter 1: Introduction 1
How to Read This Guide 1

Security Concepts Overview 1

Roles 2

Chapter 2: Authentication Server Access 3
Installing and Starting the AS 3

Connecting to the AS 3

Chapter 3: DOFConnection and DOFServer Instances 5
Creating Credentials 5

Security Desire 6

DOFConnection Instances 6

DOFServer Instances 7

Exceptions 7
Authentication Failed 7
Unknown Domain 8

Chapter 4: DOFSystem Instances 9
The DOFDomain Class 9

Secure DOFSystem Instances 10
Adding a Domain Configuration to a Connection 10
Using a Domain State Listener 11

Chapter 5: Permissions 15
Permission Types 15

Binding Permission 15
ActAsAny Permission 15

Uses Cases for Permission Sets 16

Create a Binding Permission 16

Create a Permission Set 17

Build a Configuration 17

Access Denied Exception 18

Basic DOF Security Programmer’s Guide



ii

Chapter 6: Bridging Security Domains 19
Bridge Behavior 19

Creating a Bridged Connection 20
Bridging Secure Domains 20
Bridging the Unsecured Domain to a Secure Domain 20

Chapter 7: Conclusion 22

Basic DOF Security Programmer’s Guide



Chapter 1: Introduction

1

Chapter 1: Introduction

The Basic DOF Security Programmer’s Guide contains the knowledge system developers
need to use version 6.x of the DOF Object Access Libraries (OALs) to connect DOF
nodes in secure domains. This guide does not cover advanced security topics, such as
setting up an Authentication Server (AS) and domain database storage. This guide is
intended as a practical guide to implementing security in code.

The DOF OALs are available in Java, C, and C#. This guide provides information only for
using the Java OAL.

Before reading this guide, you should be familiar with the material in the DOF
Connectivity Programmer’s Guide. Another useful reference is the API documentation,
the latest version of which is included in the SDK.

How to Read This Guide
To get the most from this guide, you should read each chapter in order through to the
end.

This guide can be used in conjunction with the security training in the DOF Essentials
SDK. The training packages the full source code from which the examples in this guide
were extracted. Refer to it for more context for any of the samples in this guide. The
training code may be copied into your own development environment and used for
practice. In addition, while this guide provides samples only in Java, the security training
in the SDK also includes samples for the C and C# OALs.

Security Concepts Overview
DOF centralizes security information on a special node called the Authentication Server
(AS). Trust is established between peers based on a shared trust of the AS. The peers
know their own credentials (identity and secret), and although they will learn other
peers’ identities, they never learn their secrets.

The AS is the only node that knows all the security information for a domain and all of
the permissions that have been granted to each node. Centralizing security information
on an AS allows requestors and providers to act as peers in secure communications,
rather than assuming that one node is more powerful or knowledgeable than the other.
Requestors and providers can then be distributed throughout a network.

Note: DOF users familiar with KryptoKnight may find it useful to know that DOF
security is based on this technology.

Basic DOF Security Programmer’s Guide



Chapter 1: Introduction

2

Each AS is connected to one or more data repositories, called a “domain storage.” Each
repository contains the security information for a single security domain. Although
communication can be set up between nodes in different security domains, in the
beginning, it is useful to think of DOF network traffic as being segmented by security
domains. In other words, only nodes in the same domain can communicate.

Authentication in a domain is achieved through the credentials mentioned earlier, which
consist of an identity and secret. The operations a node is able to perform within the
domain are controlled through permissions.

Although this discussion has referred to communication between nodes, it is important
to note that DOF security is actually more granular than that. Credentials are actually
assigned to DOF connectivity components (DOFSystem, DOFConnection, and
DOFServer). Thus, it is possible for a DOF to have a DOFSystem with credentials in one
domain and a DOFConnection with credentials in a different domain. These components
would then be unable to communicate with one another without bridging them, even
though they are attached to the same DOF. However, in the most common use cases, all
the connectivity components attached to the same DOF would use the same credentials,
so it is a useful simplification in the beginning to think of security in terms of
communication between nodes.

Roles
For the purposes of this guide, there are three types of developers:

l System developers
l Application and device developers (operations programming)
l Domain managers, who ensure data is properly entered into the domain storage
repository

This guide was written specifically for system developers, those who will be working
with the connectivity functionality of DOF and providing classes for application and
device developers (operations programming).

For more information on these roles, refer to the DOF Connectivity Programmer’s
Guide.

Basic DOF Security Programmer’s Guide



Chapter 2: Authentication Server Access

3

Chapter 2: Authentication Server Access

To test or use secure connectivity components, you must have access to an
Authentication Server (AS) that can authenticate the components’ credentials. This
chapter explains how to install and connect to the AS that is included with the security
training.

Installing and Starting the AS
The AS can be installed on either Windows or Linux. Follow the instructions in the
readme files for the tutorials to install and run the trainings. This starts the AS as well
as other sample applications. You may then close sample applications, but leave the AS
running, if you choose.

The chapters in this guide correspond with the following training modules:

l Chapter 3: DOFConnection and DOFServer Instances with training module 1
l Chapter 4: DOFSystem Instances with training module 2
l Chapter 5: Permissions with training module 3
l Chapter 6: Bridging Security Domains with training module 4

The AS created for training module 3 (on permissions) contains limited permissions for
the purpose of demonstrating exceptions in training, so using that AS without
understanding the permissions it grants may lead to unexpected results. You may wish
to use the AS from an earlier training module while experimenting with code in
Chapter 5: Permissions.

Warning: The training AS should be used only for training or experimentation while
learning DOF, and it should be run only within an isolated environment. It must never
be used in development or in a final production system. It provides very broad
permissions with weak secrets. In addition, because it is distributed to multiple
audiences, it violates the general DOF specification to create unique object identifiers
(OIDs).

Connecting to the AS
Connections to the AS are unsecured. For this reason, they should allow only
authentication-related traffic, and operations should not be sent over these connections.
All authentication-related traffic is encrypted.

Code Sample
The following sample shows a sample configuration for a connection to an AS:

DOFConnection.Config connectionConfig = new DOFConnection.Config.Builder
(DOFConnection.Type.STREAM, addressOfAS)

.addTrustedDomains(DOFObjectID.DOMAIN_BROADCAST)

.setProtocolNegotiator(DOFProtocolNegotiator.createDefaultASOnly())

Basic DOF Security Programmer’s Guide



Chapter 2: Authentication Server Access

4

.build();

Code Discussion
You should already be familiar with the builder pattern and how it is used to create DOF
connectivity components. The addressOfAS variable passed in the Builder’s constructor
represents a DOFAddress instance that is using the correct IP address and port of the
AS. You need to create your own DOFAddress using the IP address and port of the node
where you installed the AS (for training or experimentation, this may often be the
localhost address). For help with the builder pattern or with creating a DOFAddress
instance, refer to the DOF Connectivity Programmer’s Guide.

The methods used in the sample do the following:

l The addTrustedDomains method specifies which domains can be authenticated
over the connection and creates a route to the AS for these domains. You can pass
a list of specific domains in this method to limit which domains the connection
attempts to connect to; however, the sample above uses the domain broadcast OID,
which means it will attempt to find any domain. This is sufficient for
experimentation and testing, but in production systems, it is probably more
efficient to provide a list of specific domains.

l The setProtocolNegotiator(DOFProtocolNegotiator.createDefaultASOnly())
method and argument cause the connection to be used only for traffic associated
with validating credentials and granting permissions. This is useful for
strengthening security on connections to the AS, because although the connection
itself is unsecured, regular operations cannot be sent over it. It can be used only
for authentication.

If you are setting up a testing environment, you can create a connection to the AS from
multiple nodes; however, it is probably simplest to attach the AS connection to a DOF
that serves as a proxy, add a secure server (discussed in the next chapter), and have all
other nodes connect to the proxy.

Basic DOF Security Programmer’s Guide



Chapter 3: DOFConnection and DOFServer Instances

5

Chapter 3: DOFConnection and DOFServer
Instances

Creating secure connections and servers is a matter of creating credentials, creating the
components, and setting credentials in the components’ configurations. You also need to
understand the effect of setting the security desire in the configuration.

Creating Credentials
Because secure connectivity components must be authenticated, they require credentials.
A set of credentials is made up of the following:

l Domain Identifiers. Each domain has an identifier. Domain identifiers are not
required in a set of credentials, but it is strongly recommended that you include
them if they are known. The domain identifier must be an object identifier (OID)
that is properly constructed according to DOF rules for creating OIDs. The class for
domain identifiers is called DOFObjectID.Domain. It is instantiated using a create
method.

l Authentication Identifiers. The authentication identifier is comparable to a
username for the node—it represents the component’s identity. It must be a
properly constructed OID. The class for authentication identifiers is called
DOFObjectID.Authentication. It is instantiated using a create method.

l Secrets. Each authentication identifier is associated with a secret, such as a
password or private 256-bit key, that is shared between the node and the AS. A
password is instantiated as a String, and a key is a byte array.

The Authentication Server (AS) included with the security training has specific sets of
credentials in its domain storage, so to create credentials that work with that AS, you
must use the exact OIDs and keys shown in the sample code. It includes separate
credentials for the provider, requestor, and proxy nodes.

Code Sample
To create credentials, use lines of code such as the following:

String domainOID = "[6:tech-services.opendof.org]";
DOFObjectID.Domain domain = DOFObjectID.Domain.create(domainOID);

String proxyOID = "[3:proxy@tech-services.opendof.org]";
DOFObjectID.Authentication proxyAuthentication =

DOFObjectID.Authentication.create(proxyOID);

byte[] key = DOFUtil.hexStringToByteArray
("000000000000000000000000000000000000000000000000000000000000000");

DOFCredentials proxyCredentials = DOFCredentials.Key.create
(domain, proxyAuthentication, key);

Basic DOF Security Programmer’s Guide



Chapter 3: DOFConnection and DOFServer Instances

6

Code Discussion
The preceding sample creates the credentials associated with a proxy node. Create
additional credentials for a requestor and provider using the following OIDs with the
same key:

l [3:provider@tech-services.opendof.org]
l [3:requestor@tech-services.opendof.org]

You may place credentials in their own class and make them static, so they can be easily
used by any class in the package. See the Creds class in the sample security training for
an example.

Note: Credentials are always passed by reference and never cloned.

Sample code in this guide uses the variable names shown in the preceding sample. It
uses providerCredentials and requestorCredentials as the variable names for the
DOFCredentials associated with providers and requestors, respectively.

Security Desire
The SecurityDesire enumeration enables you to control the types of security allowed on
DOFConnections and DOFServers. The OALs provides the following useful values:

l NOT_SECURE. This value prevents the component from validating credentials
and should not be used in a secure system.

l ANY. If the security desire for a connection that has credentials is set to ANY, it
can connect to a server either with or without validating its credentials. A server
that has credentials and has its security desire set to ANY can accept either secure
or unsecured connections. The default security desire for both connections and
servers is ANY.

l SECURE. If the security desire for a connection or server is set to SECURE,
connections cannot be made without validation.

The SECURE and ANY security desires are compatible. If a connection set to SECURE
attempts to connect to a server set to ANY, the connection will succeed as long as both
components have compatible credentials. The reverse is also true, and a secure server
can accept a connection with the security desire set to ANY, as long as both have
credentials.

Note: If both components have their security desire left at the default security desire of
ANY, no validation will occur, even if both components have credentials. To ensure that
a secure connection is made, either one or both components must set its security desire
to SECURE.

DOFConnection Instances
The following sample shows how to build a configuration for a secure DOFConnection.

Basic DOF Security Programmer’s Guide



Chapter 3: DOFConnection and DOFServer Instances

7

Code Sample
DOFConnection.Config myConnConfig = new DOFConnection.Config.Builder

(DOFConnection.Type.STREAM, myAddress)
.setCredentials(requestorCredentials)
.setSecurityDesire(SecurityDesire.SECURE)
.build();

Code Discussion
The configuration shown uses the DOFCredentials created earlier for a requestor node.
The security desire is set to SECURE so that the connection will always require
validation.

DOFServer Instances
The following sample shows how to build a configuration for a DOFServer that can
accept secure or unsecured connections, using the DOFCredentials created earlier for a
proxy node.

Code Sample
DOFServer.Config myServerConfig = new DOFServer.Config.Builder

(DOFServer.Type.STREAM, myAddress)
.addCredentials(proxyCredentials)
.setSecurityDesire(SecurityDesire.ANY)
.build();

Code Discussion
The security desire is shown set to ANY for reference, although this step is unnecessary
since ANY is the default value.

Because the security desire for the connection shown earlier is set to SECURE, this
server can accept the connection, and validation occurs. In addition, this server could
accept connections in the unsecured domain that do not have credentials. It would also
accept connections with credentials that have a security desire of ANY, but
communication between those components would also be in the unsecured domain. The
connection would be unable to communicate with any other secure components, even if
they had compatible credentials, because validation would not occur.

Exceptions
The Java OAL defines several security-related exceptions, two of which you may receive
at this point if you are attempting to validate and connect secure components:

l Authentication failed
l Unknown domain

Authentication Failed
The “authentication failed” exception may mean your credentials are incorrect in some
way, although this is a general exception for a number of security-related failures.

Basic DOF Security Programmer’s Guide



Chapter 3: DOFConnection and DOFServer Instances

8

Unknown Domain
The “unknown domain” exception typically means the domain identifier used in your
credentials is incorrect or the route to the AS has been lost. If it is a connection failure,
the failure may have occurred in any of the connections between the node and the AS.

Basic DOF Security Programmer’s Guide



Chapter 4: DOFSystem Instances

9

Chapter 4: DOFSystem Instances

When creating a secure DOFSystem, it is important to first ensure that the DOF has a
compatible route to the Authentication Server (AS); otherwise, the system will not be
able to authenticate and creation will fail. The library provides a couple of different
methods for checking that a domain is available, which are suitable for different use
cases. Both involve the creation of a DOFDomain and are discussed in the next section.
After looking at these, we can proceed with creating a secure DOFSystem.

The DOFDomain Class
The DOFDomain class represents the route to a domain and enables checking the state
of domain connectivity. This class can be used in a couple of ways to ensure that a route
to the domain is available when you attempt to instantiate a DOFSystem:

l Domain configurations (DOFDomain.Config instances) can be added to
DOFConnection and DOFServer by using the addDomains method in their
builders. This ensures that these components check the route to each of the added
domains when they connect or start. The connection fails if routes are not available
to all specified domains. In addition, it causes the connection or server to
periodically check that the domain is still available. If the route to the domain fails,
the connection is disconnected. Thus, if the connection or server is connected, you
can assume that the route to the domain is open. This use of DOFDomain is most
useful where connections are being made synchronously.

l An independent instance of DOFDomain can be instantiated, and a
DOFDomain.StateListener can be used to monitor the route to the domain. The
DOFSystem itself can be created in the listener callback to ensure that you attempt
to create an instance of DOFSystem only when a route to the domain is available.
This use of DOFDomain is effective with asynchronous connections.

Code Sample
DOFDomain.Config is instantiated through the use of a builder:

DOFDomain.Config domainConfig = new DOFDomain.Config.Builder(proxyCredentials)
.setMaxSilence(30 * 60 * 1000)
.build();

Code Discussion
The builder requires a DOFCredentials argument, and in this sample, we used the same
credentials used for other components on the node. In addition, the setMaxSilence
method controls how often (in milliseconds) the route to the domain is checked to
ensure it remains open. The default setting is for one hour, but if your application
frequently creates and destroys DOFSystems, you may wish to lower this considerably.
The sample sets the maximum silence to 30 minutes, although this may still be too high
for some applications.

Basic DOF Security Programmer’s Guide



Chapter 4: DOFSystem Instances

10

Secure DOFSystem Instances
In this section, we will walk through the two different use cases for DOFDomain when
instantiating a DOFSystem.

Adding a Domain Configuration to a Connection
The high-level steps for this use case are the following:

1. Build a connection configuration that adds the domain and connect synchronously.
2. Instantiate DOFSystem.

Build a Connection Configuration That Adds the Domain
The following sample shows the entire process of building a connection configuration,
creating the connection, and connecting synchronously.

Code Sample
DOFConnection.Config connectionConfig = new DOFConnection.Config.Builder

(DOFConnection.Type.STREAM, address)
.setCredentials(proxyCredentials)
.addDomains(domainConfig)
.setSecurityDesire(SecurityDesire.SECURE)
.build();

DOFConnection connection = dof.createConnection(connectionConfig);

try{
myConnection.connect(TIMEOUT);

} catch (DOFException e){
System.out.println("Unable to connect. There may not be a valid route to

the AS.");
e.printStackTrace();

}

Code Discussion
You should be familiar with most of the code shown in the sample, but note that the
sample shows the use of the addDomains method in the builder.

Instantiate DOFSystem
The following sample shows how to create a secure DOFSystem.

Code Sample
DOFSystem.Config systemConfig = new DOFSystem.Config.Builder()

.setCredentials(proxyCredentials)

.build();

try {
DOFSystem system = dof.createSystem(systemConfig, TIMEOUT);

} catch (DOFException e) {
e.printStackTrace();

}

Basic DOF Security Programmer’s Guide



Chapter 4: DOFSystem Instances

11

Code Discussion
To create a secure DOFSystem, you must build a system configuration (unlike the
method for creating a default system that was shown in the DOF Connectivity
Programmer’s Guide). Because the system must now be authenticated when it is created,
you must place the createSystem method in a try-catch block and provide a timeout
argument.

Using a Domain State Listener
A domain state listener can be implemented in multiple ways. This guide illustrates a
single, highly specific example. The high-level steps for this example are the following:

1. As the system developer, you would do the following:
a. Create an interface with a method that can be used to pass a DOFSystem to

the application developer when it becomes available.
b. Implement DOFDomain.StateListener and instantiate DOFSystem in its

stateChanged method. Also call the interface method from step 1.1 in the
stateChanged method to pass the DOFSystem to the application developer.

c. Write a method that the application developer can call to initiate system
creation.

2. The application developer would use your code by doing the following:
a. Implementing the interface you created in Step 1.1.
b. Calling the method you created in Step 1.3.

Both system and application developer steps are described in the following sections.

Create System Available Interface
The callback in this interface will be called in the
DOFDomain.StateListener.stateChanged method when it attempts to create a
DOFSystem.

Code Sample
public interface SystemAvailableCallback{

public void systemAvailable(String name, DOFSystem system, Exception
exception);

}

Code Discussion
The main purpose for creating an interface is so that you can provide application
developers with code that includes the interface, and they can then implement the
interface to create one or more systems, as needed. For this reason, our sample interface
includes a parameter for the system name, which is used as a key for mapping multiple
systems. The other two parameters enable the callback to pass either a created
DOFSystem to the application developer or an exception if the system could not be
created.

Implement DOFDomain.StateListener
The DOFDomain.StateListener interface has two methods:

Basic DOF Security Programmer’s Guide



Chapter 4: DOFSystem Instances

12

l stateChanged. The library calls this method when the connected state of the
domain changes. It is also called when the DOFDomain is instantiated to provide
the initial state of the domain.

l removed. The library calls this method when the listener is removed or the
system is destroyed. You can use it to free resources associated with the listener;
however, since our sample code does not allocate any resources for the listener, we
will leave this method empty (not shown).

Code Sample
The following sample shows an implementation of DOFDomain.StateListener with the
system being created in the stateChanged method, and the system available callback
being used to return the created system to the application developer.

private class CustomDomainListener implements DOFDomain.StateListener {
private final DOFSystem.Config systemConfig;
private final SystemAvailableCallback systemAvailableCallback;

public CustomDomainListener(DOFSystem.Config systemConfig,
SystemAvailableCallback systemAvailableCallback) {

this.systemConfig = systemConfig;
this.systemAvailableCallback = systemAvailableCallback;

}

@Override
public void stateChanged(DOFDomain domain, State state) {

String systemName = systemConfig.getName();

if(state.isConnected()){
try{

DOFSystem system = dof.createSystem(systemConfig, TIMEOUT);
systemMap.put(systemName, system);
systemAvailableCallback.systemAvailable(systemName, system, null);

} catch (DOFException e) {
System.err.println("Unable to create system. Getting error " +

e.getMessage());
systemAvailableCallback.systemAvailable

(systemName, null, e);
}

}
}

Code Discussion
Note the following about the sample code shown:

l The constructor for our implementation takes two parameters:
- DOFSystem.Config. The method shown in the next section builds this
configuration and passes it to the constructor.

- SystemAvailableCallback. The application developer passes an instance of
this callback to the method shown in the next section, and it then passes it to
this constructor.

l In the stateChanged method, we check the connected state of the domain. If it is
connected, we attempt to create the system. If the system is successfully created,

Basic DOF Security Programmer’s Guide



Chapter 4: DOFSystem Instances

13

we pass the system to the application developer. If not, we pass an exception to the
application developer.

Write Method to Initiate System Creation
In this section, we will examine an example of a method a system developer could create
for an application developer to call to initiate system creation.

Code Sample
Our example method builds a system configuration, instantiates DOFDomain, and adds a
state listener.

public void beginCreateSecureDOFSystem(String name, DOFCredentials
systemCredentials, SystemAvailableCallback systemAvailableCallback){

DOFSystem.Config systemConfig;

if(dof != null){
systemConfig = new DOFSystem.Config.Builder()

.setCredentials(systemCredentials)

.setName(name)

.build();

DOFDomain.Config domainConfig = new DOFDomain.Config.Builder
(systemCredentials)

.build();

DOFDomain domain = dof.createDomain(domainConfig);

domain.addStateListener(new CustomDomainListener(systemConfig,
systemAvailableCallback));

} else {
System.err.println("Unable to create the system. The DOF had not been

created.");
}

}

Code Discussion
The method requires the application developer to pass a name for the system, the
system’s credentials, and an instance of the system available callback. The only new Java
OAL API in the sample is the DOFDomain.addStateListener method, which activates the
DOFDomain.StateListener instance created earlier.

Implement System Available Interface
This section shows how an application developer might implement the system available
callback.

Code Sample
instanceOfSystemDevClass.SystemAvailableCallback callback = new

instanceOfSystemDevClass.SystemAvailableCallback() {
@Override
public void systemAvailable(String name, DOFSystem system,

Exception exception) {
if(system != null){

requestor = new Requestor(system);

Basic DOF Security Programmer’s Guide



Chapter 4: DOFSystem Instances

14

showUI();
return;

}

if(exception != null){
//Fail gracefully.

}
}

};

Code Discussion
The application developer must instantiate the system developer’s class and implement
the SystemAvailableCallback created earlier.

If the application developer receives a DOFSystem instance, he or she then attempts to
create an object that can run DOF operations. Our example assumes the application
developer has created a class called Requestor that contains such functionality.

If the system was not created, the application developer should handle the exception. No
example is shown because how to handle an exception relies largely on other application
functionality.

Call Method to Initiate System Creation
The application developer would initiate all the functionality shown for this use case by
calling the method we created to initiate system creation, as shown in the following
code:

instanceOfSystemDevClass.beginCreateSecureDOFSystem("requestor",
requestorCredentials, callback);

Basic DOF Security Programmer’s Guide



Chapter 5: Permissions

15

Chapter 5: Permissions

Ultimately, permissions are controlled within the domain storage and not at the
connectivity programming level. However, there are optional use cases for associating a
DOFConnection or DOFServer instance with a permission set. Before discussing these
use cases, it is important to understand a number of permission types.

Permission Types
The OAL defines a number of permission types. This guide will discuss the following:

l Binding Permission
l ActAsAny permission

Binding Permission
The binding permission (DOFPermission.Binding) controls the types of operations a
node can perform that involve interface items. Actions are added to this permission to
specifically control the operations:

l Provide. A provider must be granted this action for the node to provide an
interface.

l Read. A requestor must be granted this action for the node to be able to perform
get, subscribe, and register operations.

l Write. A requestor must be granted this action for the node to be able to perform
set operations.

l Execute. A requestor must be granted this action for the node to be able to
perform invoke operations.

l Session. A requestor must be granted this action for the node to be able to open
sessions.

Any proxy nodes between the requestor and provider require the permissions of both
the provider and requestor for operations to complete successfully.

The permissions matrix more fully illustrates the interaction between permissions and
operations on various nodes.

ActAsAny Permission
The ActAsAny permission allows a proxy node to forward operations for other nodes.
This permission is instantiated by calling its constructor: DOFPermission.ActAsAny.

Basic DOF Security Programmer’s Guide



Chapter 5: Permissions

16

Uses Cases for Permission Sets
As stated earlier, the AS ultimately controls the permissions a component can be
granted, because the component’s credentials are associated with permissions in the
domain storage. You cannot use a permission set to request permissions that are not
already associated with the credentials in the domain storage; they will not be granted.
However, associating credentials with a connection or server is useful for two reasons:

1. Optimization. If you do not associate any permissions with the connection or
server, then each time an operation that requires a new permission is transmitted,
communication occurs with the Authentication Server (AS). However, if the
connection or server requests a permission set before sending operations, it cuts
down on network traffic associated with granting permissions each time a new
operation is initiated.

2. Greater restriction. The permission set can be used to further limit the
permissions a component has. If you provide a permission set and do not allow the
OAL to extend them, the connection or server will have only the specific
permissions you specify, regardless of whether the credentials used are associated
with additional permissions in the domain storage. This use case is unusual and
should probably be avoided when possible to simplify troubleshooting.

Create a Binding Permission
Binding permissions are created using the builder pattern. In addition to allowing you to
add any of the actions described above, the DOFPermission.Binding.Builder includes
methods for doing the following:

l Limiting the permission to a single object identifier (OID) or to a list of OIDs
l Limiting the permission to a single interface identifier (IID) or to a list of IIDs
l Requiring that OIDs have a specific attribute or a combination of attributes or
attribute types before the permission will be granted

If none of these methods are used, the permission set automatically requests permission
for all OIDs, IIDs, and attributes that the AS would otherwise grant. Use of these
methods is not demonstrated in this guide.

Code Samples
The following sample shows a binding permission for a provider:

DOFPermission providerBindingPerm = new DOFPermission.Binding.Builder
(DOFPermission.Binding.ACTION_PROVIDE)

.build();

The following example shows a binding permission that grants only read and write
actions for a requestor:

DOFPermission requestorBindingPerm = new DOFPermission.Binding.Builder
(DOFPermission.Binding.ACTION_READ)

.addActions(DOFPermission.Binding.ACTION_WRITE)

.build();

Basic DOF Security Programmer’s Guide



Chapter 5: Permissions

17

The following sample shows the permissions a proxy would need to forward operations
between nodes with the permissions in the previous samples:

DOFPermission proxyBindingPerm = new DOFPermission.Binding.Builder
(DOFPermission.Binding.ACTION_READ)

.addActions(DOFPermission.Binding.ACTION_WRITE)

.addActions(DOFPermission.Binding.ACTION_PROVIDE)

.build();

Note: In a binding permission, if the AS denies any of the actions in the permission, the
entire permission is denied. For example, if the above example of a requestor was
granted the read action by the AS, but denied the write action, the entire permission
would be denied.

Create a Permission Set
Permission sets are also created using the builder pattern. The samples in this section
show how to place the binding permissions created in the previous section into
permission sets. In addition, the proxy node’s permission set also contains the ActAsAny
permission.

Code Samples
The following is a permission set for a provider:

DOFPermissionSet providerPermissions = new DOFPermissionSet.Builder()
.addPermission(providerBindingPerm)
.build();

The following is a permission set for a requestor:

DOFPermissionSet requestorPermissions = new DOFPermissionSet.Builder()
.addPermission(requestorBindingPerm)
.build();

The following is a permission set for a proxy:

DOFPermissionSet proxyPermissions = new DOFPermissionSet.Builder()
.addPermission(proxyBindingPerm)
.addPermission(new DOFPermission.ActAsAny())
.build();

Build a Configuration
After building a permission set, it can be added to either a connection or server
configuration.

Code Sample
The following sample shows how to add a permission set to a connection configuration.

DOFConnection.Config myConnConfig = new DOFConnection.Config.Builder
(DOFConnection.Type.STREAM, myAddress)

.setCredentials(providerCredentials)

.setPermissions(providerPermissions)

Basic DOF Security Programmer’s Guide



Chapter 5: Permissions

18

.setPermissionsExtendAllowed(false)

.setSecurityDesire(SecurityDesire.SECURE)

.build();

Code Discussion
The setPermissions method of the builder takes a permission set as a parameter and is
used to add a permission set to a configuration. The builder for a server configuration
has an identical method.

The setPermissionsExtendAllowed method is used to limit the component’s permissions
to only those specified in the set. So in this example, the connection would have only the
provide action in a binding permission, even if the AS grants other permissions to the
credentials. The default setting for this parameter is true.

Access Denied Exception
At this point, if you attempt to perform operations, you may begin to see the “access
denied” exception. This exception means that the node originating the operation (usually
a requestor) is not being granted the permission it needs to complete the operation. (If a
proxy or receiving node does not have the correct permission, the originating node
receives a TIMEOUT exception.)

As a developer, you should check for connection or server configurations where
setExtendAllowed is set to false and ensure that the proper permissions and actions are
granted in the permission set. If you have no such configurations, the problem is likely
to be in the domain storage, and you can escalate the problem to the domain manager.

Basic DOF Security Programmer’s Guide



Chapter 6: Bridging Security Domains

19

Chapter 6: Bridging Security Domains

If you need components to communicate between two different domains, you can create
a bridge and add it to a connection or server. The AS created for training module 4
provides two domains. To experiment with code in this chapter using the training AS,
you must run the module 4 AS and create additional credentials using the following
domain and authentication identifiers (see Creating Credentials):

l Domain. [6:2.tech-services.opendof.org]
l Provider. [3:provider@2.tech-services.opendof.org]
l Requestor. [3:requestor@2.tech-services.opendof.org]
l Proxy. [3:proxy@2.tech-services.opendof.org]

The credentials for the provider, requestor, and proxy all use the same key (all zeros)
that was used for credentials created earlier. In this chapter, we will refer to the domain
we have been using in previous chapters as domain 1. We will refer to the new domain
as domain 2. Sample code shown in this chapter uses only the provider credentials and
providerCredentials2 as the variable name for its credentials in domain 2.

Bridge Behavior
Bridges can be added to connections or servers; however, the behavior on each is slightly
different:

l Servers. A server can have credentials in multiple domains, and its credentials
determine which domains it can accept connections from. On a server, a bridge
ignores incoming secure connections. The bridge routes incoming unsecured
connections to the domain that the server’s bridge has credentials for. A server
bridge is only capable of bridging unsecured traffic to a secure domain. A server
must have its security desire set to NOT_SECURE or ANY to create this type of
bridge. A server with a SECURE security desire ignores incoming unsecured
connections and the bridge will not function.

l Connections. For communication with external nodes, a connection always
connects to the domain it has credentials for. If given a bridge, the connection is in
the bridge’s domain within its originating node. A connection with credentials in
one domain and a bridge that has credentials in a different domain creates a bridge
between the two domains. A connection bridge can be used either to bridge traffic
between two secure domains or to bridge traffic from the unsecured domain to a
secure domain.

This chapter will focus on connection bridges, because they are more flexible and can
bridge secure domains. The process for adding a bridge to a server is similar and can be
extrapolated from the sample code shown for a connection.

Basic DOF Security Programmer’s Guide



Chapter 6: Bridging Security Domains

20

Creating a Bridged Connection
Adding a bridge to a connection requires using the builder pattern to instantiate a bridge
and then setting the bridge in the connection configuration. We will show examples of
how to bridge secure domains and how to bridge the unsecured domain to a secure
domain.

Bridging Secure Domains
The sample code in this section shows how to create a bridge between domain 1 and
domain 2.

Code Sample
DOFOperation.Bridge.Config bridgeConfig = new

DOFOperation.Bridge.Config.Builder()
.setCredentials(providerCredentials)
.build();

DOFConnection.Config myConnectionConfig = new DOFConnection.Config.Builder
(DOFConnection.Type.STREAM, myAddress)

.setCredentials(providerCredentials2)

.setBridge(bridgeConfig)

.setSecurityDesire(SecurityDesire.SECURE)

.setTrustedDomains(DOFObjectID.DOMAIN_BROADCAST)

.build();

Code Discussion
Note that the bridge in the previous sample uses the provider credentials from domain 1.
A DOFSystem on the same node would need credentials in domain 1 to use this
connection.

The credentials set in the connection configuration are the provider credentials from
domain 2. This connection would route traffic from a DOFSystem in domain 1 to
external nodes in domain 2.

If the DOF is set to be a router (for example, on a proxy), the connection can also route
traffic from other connections or servers in domain 1 to domain 2.

Bridging the Unsecured Domain to a Secure Domain
The sample code in this section shows how to bridge unsecured components to a secure
domain. On endpoint nodes in a network with only a single DOFSystem instance and
very few DOFConnection instances, this can be an alternative to creating secure systems.
However, this alternative must be used carefully to ensure that no holes are created in
security.

Code Sample
DOFOperation.Bridge.Config bridgeConfig = new

DOFOperation.Bridge.Config.Builder()
.setCredentials(null)
.build();

Basic DOF Security Programmer’s Guide



Chapter 6: Bridging Security Domains

21

DOFConnection.Config myConnectionConfig = new DOFConnection.Config.Builder
(DOFConnection.Type.STREAM, myAddress)

.setCredentials(providerCredentials2)

.setBridge(bridgeConfig)

.setSecurityDesire(SecurityDesire.SECURE)

.addTrustedDomains(DOFObjectID.DOMAIN_BROADCAST)

.build();

Code Discussion
Setting the credentials in the bridge to null allows the connection to accept traffic from
unsecured systems on the DOF. Because the connection has credentials in domain 2,
traffic is routed to other nodes in domain 2.

Basic DOF Security Programmer’s Guide



Chapter 7: Conclusion

22

Chapter 7: Conclusion

After reading this guide, you should have the basic knowledge required to connect to an
Authentication Server (AS), create secure DOF components, add permission sets to
connections and servers, and create bridges between security domains.

Basic DOF Security Programmer’s Guide


	Chapter 1: Introduction
	How to Read This Guide
	Security Concepts Overview
	Roles

	Chapter 2: Authentication Server Access
	Installing and Starting the AS
	Connecting to the AS

	Chapter 3: DOFConnection and DOFServer Instances
	Creating Credentials
	Security Desire
	DOFConnection Instances
	DOFServer Instances
	Exceptions
	Authentication Failed
	Unknown Domain


	Chapter 4: DOFSystem Instances
	The DOFDomain Class
	Secure DOFSystem Instances
	Adding a Domain Configuration to a Connection
	Using a Domain State Listener


	Chapter 5: Permissions
	Permission Types
	Binding Permission
	ActAsAny Permission

	Uses Cases for Permission Sets
	Create a Binding Permission
	Create a Permission Set
	Build a Configuration
	Access Denied Exception

	Chapter 6: Bridging Security Domains
	Bridge Behavior
	Creating a Bridged Connection
	Bridging Secure Domains
	Bridging the Unsecured Domain to a Secure Domain


	Chapter 7: Conclusion

